УДК 612.392.64:616-008.6] (476)

ЙОДНАЯ ОБЕСПЕЧЕННОСТЬ И ЙОДОДЕФИЦИТНЫЕ ЗАБОЛЕВАНИЯ: ТЕКУЩЕЕ СОСТОЯНИЕ ПРОБЛЕМЫ В РЕСПУБЛИКЕ БЕЛАРУСЬ

¹ Т.В.Мохорт, ² Н.Д.Коломиец, ³ С.В.Петренко, ⁴ Е.В.Федоренко, ¹ Е.Г.Мохорт

¹ Белорусский государственный медицинский университет, пр. Дзержинского, 83, 220116, г. Минск, Республика Беларусь ² Белорусская медицинская академия последипломного образования, ул. П.Бровки, 3, корп. 3, 220013, г. Минск, Республика Беларусь ³ «Международный государственный экологический институт им. А.Д.Сахарова» Белорусского государственного университета, ул. Долгобродская, 23/1, г. Минск, 220070, г. Минск, Республика Беларусь ⁴ Научно-практический центр гигиены, ул. Академическая, 8, 220012, г. Минск, Республика Беларусь

Республика Беларусь длительный период является территорией, свободной от йодного дефицита, и относится к странам, имеющим оптимальную йодную обеспеченность, что признано Международной сетью по йоду. Избранная в стране стратегия, направленная на законодательное закрепление применения йодированной соли при производстве пищевой продукции, демонстрирует устойчивый результат, который подтверждается не только расчетными данными потребления йода с пищевыми продуктами, но также динамикой заболеваемости основными йододефицитными заболеваниями и динамическим мониторингом йодурии.

Ключевые слова: йодная обеспеченность, щитовидная железа, йодный дефицит, гипотиреоз, йодированная соль, йодная профилактика.

На протяжении почти 20 лет Республика Беларусь является территорией, свободной от йодного дефицита, и относится к странам, имеющим оптимальную йодную обеспеченность, что признано Международной сетью по йоду [1]. Несмотря на этот факт, медицинское сообщество постоянно возвращается к переоценке ситуации, что обусловлено отсутствием адекватной йодной обеспеченности в пограничных странах постсоветского пространства (Россия, Литва, Украина).

Законодательное закрепление к 2016—2018 гг. применения йодированной соли при производстве пищевой продукции (постановление Главного государственного санитарного врача от 09.12.1997 №27 «Об использовании пищевой йодированной соли», постановление Главного государственного санитарного врача от 21.03.2000 №11 «О проведении профилактики йоддефицитных заболеваний», постановление Совета Министров Республики Беларусь от 06.04.2001 №484 «О предупреждении заболеваний, связанных с дефицитом йода», Закон Республики Беларусь от 29.06.2003 №217-3 «О качестве и безопасности продовольственного сырья и пищевых продуктов для жизни и здоровья человека») как национальной меры

по ликвидации йододефицита обеспечило стабильное существенное увеличение содержания йода в промышленно выпускаемой пищевой продукции. Замена в технологических производствах нейодированной соли на йодированную позволила существенно увеличить содержание этого микронутриента. Например, в хлебобулочных изделиях уровень йода увеличился более чем в 7 раз (до $42,02\pm1,48$ мкг/100 г) без дополнительного обогащения. При этом, важно отметить, что хлебобулочные изделия присутствуют в рационах всех слоев населения, и их потребление не имеет сезонных ограничений. Высокий уровень поступления йода в организм обеспечивают также мясные и колбасные изделия, в которых расчетное содержание йода в мясной продукции за счет использования в рецептурах йодированной соли при производстве составило в среднем 133,3 мкг/100 г.

Таким образом, потребление целевой пищевой продукции с модифицированным содержанием йода, связанным с использованием йодированной соли, складывается, главным образом, из хлебобулочных изделий и мясной продукции (134,38 и 52 г в сутки соответственно), нецелевая группа — молочная продукция и яйца — при-

сутствуют в рационах в количестве 273,81 и 52,8 г в сутки соответственно. 6% респондентов не употребляли мясную продукцию. В рационах «высоких» потребителей указанные продукты использовались в количествах 285,0, 122,37, 450,0 и 96,39 г в сутки соответственно. За последние годы наиболее репрезентативное изучение потребления соли в Беларуси проводилось в рамках исследования STEPS в 2016 г. [2]. На основании исследования экскреции натрия было рассчитано, что взрослым населением объективно потребляется 10,6 г соли в сутки. При этом, согласно опубликованным данным, на долю промышленно изготовленных продуктов приходится до 77% поступающей соли [3]. По данным наших исследований, выполненных в 2018 г., только 49% респондентов из опрошенных более 800 человек используют в домашних хозяйствах йодированную соль [4]. При фактических уровнях потребления йодированной «столовой» соли вклад в алиментарную экспозицию йодом достигает 43%, но если потребление соли будет соответствовать рекомендациям ВОЗ, то этот вклад снизится до 18%. В этом случае основной вклад в алиментарную экспозицию йодом будут вносить хлебобулочные изделия (38%), а ожидаемое снижение потребления соли не приведет к возрастанию риска развития йододефицита среди населения. Таким образом, использование йодированной соли при производстве пищевой продукции массового производства является гарантией стабильного поступления йода в организм человека и однозначно может рассматриваться как способ профилактики йододефицита на популяционном уровне.

С позиций оценки здоровья населения в условиях достижения адекватной йодной обеспеченности представляет интерес динамика первичной заболеваемости по некоторым нозологическим формам патологии щитовидной железы.

Самым важным показателем является оценка первичной заболеваемости врожденным гипотиреозом, оценка которой осуществляется по результатам неонатального скрининга, проводимого в соответствии с консенсусными рекомендациями Европейского общества детских эндокринологов 2014 г. [5, 6]. В Беларуси на протяжении многих лет наблюдения после достижения целевых показателей йодной обеспеченности отмечается стабильно низкий уровень врожденного гипотиреоза, характерный для популяций Европейского региона с адекватным потреблением йода с продуктами питания и определяющий уровень заболеваемости, обусловленный наследственными формами заболевания. Динамика первичной заболеваемости врожденным гипотиреозом, основанная на подтверждении диагноза на втором этапе скрининга (рис. 1), свидетельствует о достижении стабильного результата (в 2006 г. первичная заболеваемость врожденным гипотиреозом составила 1,96 на 100 тысяч населения, в 2016 г. -1,27, а в 2020 г. -1,14 на 100 тысяч населения). Распространенность врожденного гипотиреоза (по данным неонатального скрининга с подтверждением на 20-м этапе) составляет 1:4216, что соответствует данным, полученным в европейских странах [7].

Приведенные данные представляют интерес с позиций доказанного наличия недостижения медианы (Ме) показателя экскреции йода с мочой у

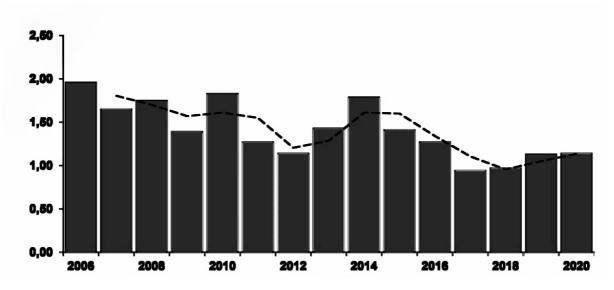


Рис. 1. Динамика первичной заболеваемости врожденным гипотиреозом у детей в Республике Беларусь (2006–2020 гг., на 100 тысяч населения)

беременных по данным исследования, проведенного в Беларуси в 2017 г. и включавшего 700 беременных из различных регионов страны. Всемирная организация здравоохранения определяет дефицит йода как среднюю концентрацию йода в моче <100 мкг/л вне беременности и <150 мкг/л - во время беременности. Адекватность рассматривается как Ме концентрации йода в моче 100-200 мкг/л вне беременности и 150-250 мкг/л во время беременности [8]. По результатам вышеуказанного исследования, в среднем по стране Ме йодурии составила 121,2 мкг/л, что ниже целевого показателя, рекомендованного экспертами и составляющего 150 мкг/л. Как следует из данных, представленных в табл. 1, диапазон колебаний показателя – от 104,5 в Витебской области до 159,7 мкг/л в Брестской области. При этом, в двух населенных пунктах Витебской области получены принципиально различные данные (177,2 мкг/л в Верхнедвинске и 73,5 мкг/л в Лепеле). Анализ использования добавок йодида калия беременными показал, что частота использования рекомендованных доз йодида калия (100–150 мкг в сутки) коррелировала с показателями экскреции йода с мочой [9].

В настоящее время активно обсуждается влияние дефицита йода в питании во время беременности с позиций оценки последствия для плода и новорожденного. Доказано, что дефицит йода может быть триггером гипотироксинемии как в организме беременной, так и у плода, что определяет потенциальное нарушение формирования нейронных связей в мозге и может оказывать влияние на формирование интеллекта ребенка [10]. Выявленный нами дефицит йода у беременных определяет необходимость принятия дополнительных мер (прием йодида калия в дозе 100-150 мкг/сут) на этапе планирования беременности и в период беременности. Эта рекомендация полностью соответствует международным и национальным рекомендациям [11–13].

Таблица 1 Результаты оценки экскреции йода с мочой у беременных (данные 2017 г.)

Область,	9	Распределение беременных (в процентах) по уровню экскреции йода с мочой, мкг/л						Ме йода,
населенный пункт	CTB (мкг/л					
	Количество (чел.)	<20	21–50	51–100	101–250	251–300	>300	
	Кол							
Гродненская	100	2,0	15,0	24,0	39,0	5,0	15,0	124,4
Слоним	50	4,0	24,0	24,0	40,0	4,0	4,0	100,0
Островец	50	0	6,0	24,0	38,0	6,0	26,0	159,5
Брестская	50	0	12,0	26,0	20,0	18,0	24,0	159,7
Береза	50	0	12,0	26,0	20,0	18,0	24,0	159,7
Гомельская	150	5,3	12,0	41,3	31,3	2,7	6,7	113,3
Ветка	50	14,0	0	30,0	38,0	4,0	14,0	127,8
Наровля	50	0	24,0	24,0	46,0	0	6,0	113,3
Корма	50	2,0	14,0	70,0	10,0	4,0	0	85,0
Могилевская	150	0	15,3	24,0	26,0	12,0	22,7	147,0
Славгород	50	0	10,0	40,0	6,0	16,0	28,0	106,8
Шклов	50	0	16,0	12,0	52,0	0	20,0	147,0
Чериков	50	0	20,0	20,0	20,0	20,0	20,0	242,5
Витебская	100	16,0	8,0	24,0	31,0	4,0	17,0	104,5
Верхнедвинск	50	16,0	0	18,0	32,0	8,0	26,0	177,2
Лепель	50	16,0	16,0	30,0	30,0	0	8,0	73,5
Минская	100	1,0	6,0	34,0	34,0	7,0	18,0	113,1
Любань	50	2,0	12,0	26,0	54,0	0	6,0	110,8
Мядель	50	0	0	42,0	14,0	14,0	30,0	120,0
Минск	50	0	4,0	32,0	46,0	4,0	14,0	151,5
Республика Беларусь	700	3,9	19,0	29,9	31,9	7,0	16,1	121,2

Показатели заболеваемости другой патологией щитовидной железы, которая традиционно ассоциируется с йодной недостаточностью, менее значимы (рис. 2), что может быть обусловлено различиями в подходах к установлению диагноза, а также в методологии сбора данных.

Начиная с 1997 г., отмечается значимый рост заболеваемости гипотиреозом, но следует учитывать, что в этот период существенно увеличилась частота гормонального тестирования, позволяющего верифицировать не только манифестный гипотиреоз, как это было в 1997 г., но и субклинический. В отчетных данных не проведен анализ доли манифестного гипотиреоза, что не позволяет делать доказательные выводы. Лидером по первичной заболеваемости гипотиреозом является г. Минск, что может быть обусловлено доступностью исследований уровня тиреотропного гормона, являющегося маркером первичного гипотиреоза. Более того, данные статистического анализа не включают оценку этиологического фактора, в частности, не выделяют ятрогенный гипотиреоз.

Динамика заболеваемости тиреотоксикозом на этапе ликвидации йодного дефицита характеризуется увеличением [14]. В Беларуси на этапе активного внедрения стратегии ликвидации йодного дефицита (2000–2005 гг.) отмечен рост заболе-

ваемости синдромом тиреотоксикоза без уточнения его причин с региональными отличиями с последующей его стабилизацией.

Анализ данных по динамике первичной заболеваемости узловым зобом также демонстрирует значимые региональные отличия, что может быть следствием различий в диагностических подходах и установлении диагноза узлового зоба при выявлении микроузловых образований, которые в большинстве регионов не выносятся в диагноз. В то же время, в Минске, Витебской и Брестской областях зарегистрирован незначительный прирост заболеваемости без дифференциации критериев диагностики. Реальная клиническая практика свидетельствует о включении микроузловых образований в проекции щитовидной железы в зарегистрированное заболевание, что, при расширении возможностей сонографической диагностики, является фактом, способным оказывать влияние на результаты.

Первичная заболеваемость простым нетоксическим зобом, или диффузным нетоксическим зобом, характеризуется снижением в динамике. Однако, точность диагностики и единства методологического подхода может быть подвергнута сомнениям. В случае установления диагноза по данным пальпации без учета сонографически под-

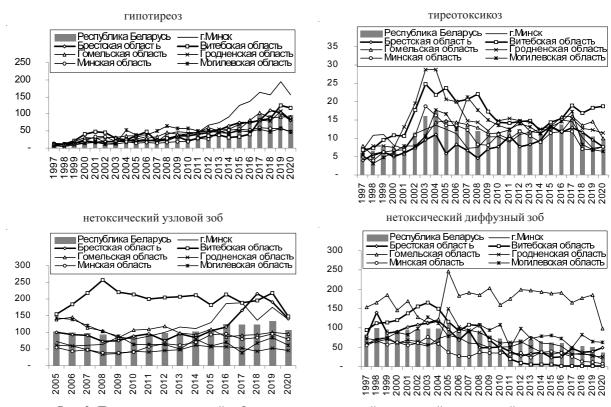


Рис. 2. Показатели первичной заболеваемости различной патологией щитовидной железы на 100 тысяч населения в динамике по регионам Республики Беларусь (материалы видеоконференции «Об итогах работы эндокринологической службы

Республики Беларусь за 2020 год и задачах на 2021 год»)

твержденных увеличенных размеров щитовидной железы, пальпируемая тиреодная ткань позволяет при нормальном объеме оценить выявленные пальпаторные изменения как диффузный зоб.

Нами в рамках национального исследования 2017 г. была проведена оценка размеров щитовидной железы у обследованных детей в зависимости от возраста (табл. 2). Приведенные результаты свидетельствуют о нормальных размерах щитовидной железы у детей. Также, по данным статистической отчетности эндокринологической службы, отмечается снижение первичной заболеваемости гипотиреозом, тиреотоксикозом, диффузным зобом.

Таким образом, динамический мониторинг по оценке состояния первичной заболеваемости тиреоидной патологией позволяет сделать следующие выводы:

1) низкий уровень выявления врожденного гипотиреоза по данным неонатального скрининга свидетельствует об эффективности избранной в Республике Беларусь стратегии ликвидации йодной недостаточности, основанной не только на использовании йодированной соли в домашних хозяйствах, но и при изготовлении пищевых продуктов;

2) для оценки реальной заболеваемости патологией щитовидной железы, ассоциированной с дефицитом йода, необходимо проведение адекватно спланированного эпидемиологического исследования, которое позволит реально оценить показатели первичной заболеваемости и распространенности узлового зоба, первичного гипотиреоза (манифестного и субклинического) с исключением факторов ятрогении.

В Великобритании улучшение йодного статуса населения с 1930-х гг. и далее было описано как «случайный триумф общественного здравоохранения», так как результаты были достигнуты при отсутствии какой-либо программы обогащения йодом. Однако, в XXI веке дефицит йода в Великобритании вновь возник в уязвимых группах, что связывают с сочетанием меняющихся методов ведения сельского хозяйства, диетических предпочтений населения и приоритетов общественного здравоохранения [15, 16].

Совместный анализ данных, включающих мониторинг расчетного теоретического поступления йода с рационом при использовании в пищевых продуктах с естественным содержанием йода, хлебобулочных и колбасных изделий, изготовленных с использованием йодированной соли, а также данные медицинского мониторинга позволяют заключить об эффективности избранной и внедренной стратегии ликвидации йодной недостаточности в стране.

Достигнутые результаты приобретают особую значимость после принятия ЮНИСЕФ обновленных рекомендаций по мониторингу программ йодирования соли и определению йодного статуса населения [17]. Согласно этим рекомендациям, йодированная соль остается основой программ йодной профилактики, но в настоящее время делается акцент на роли в формировании адекватной йодной обеспеченности не только адекватно йодированной кухонной соли, но также содержания йодированной соли в пищевых продуктах (рис. 3). Также в этом документе:

расширен диапазон оптимальной Ме экскреции йода с мочой у школьников до 100–299 мкг/л (избыточный уровень – больше 300 мкг/л);

определена возможность оценки йодного статуса населения по Ме экскреции йода с мочой, а не доле лиц с пониженным, адекватным или избыточным потреблением йода;

указывается на необходимость мониторирования не только качества и использования йодированной соли в домохозяйствах, но и ее применения в пищевой и хлебопекарной промышленности;

рекомендуется, при наличии ресурсов, исследовать потребление йода среди различных групп населения (отдельные регионы, городское/сельское население, уровень достатка), а также у наиболее подверженных йодной недостаточности групп (беременные, кормящие женщины), и для более полной оценки йодного статуса населения оценивать величину потребления йода (в мкг/сутки), а также источники йода в питании (естественное содержание йода, из «кухонной» соли, из соли в промышленно переработанных пищевых продуктах).

Анализ данных медицинского мониторинга свидетельствует об общей закономерности сни-

Таблица 2

Размеры щитовидной железы у обследованных детей в зависимости от возраста (выборка национального исследования 2017 г.)

Пол	Возраст							
	9 лет	10 лет	11 лет	12 лет				
	Объем щитовидной железы (см ³)							
Девочки	4,3 (n=24)	5,4 (n=134)	5,7 (n=81)	5,9 (n=38)				
Мальчики	4,3 (n=270)	5,1 (n=104)	5,8 (n=91)	6,5 (n=45)				

Рис. 3. Модель обновленных рекомендаций по программам использования йодированной соли и определению йодного статуса населения

жения заболеваемости йододефицитной патологией щитовидной железы. Особую значимость имеют показатели, при динамическом мониторинге которых оценка проводится по единой методологии. Из многообразия приведенных данных указанным требованиям соответствует только врожденный гипотиреоз.

Несмотря на проводимую работу по унификации диагностических подходов простого нетоксического зоба, узлового зоба и гипотиреоза у взрослых до настоящего времени результаты не достигнуты.

В заключение важно подчеркнуть, что избранная в Республике Беларусь стратегия, направленная на законодательное закрепление применения йодированной соли при производстве пищевой продукции, демонстрирует устойчивый результат, который подтверждается не только расчетными данными потребления йода с пищевыми продуктами, но также динамикой заболеваемости основными йододефицитными заболеваниями и динамическим мониторингом йодурии.

Литература

- 1. Zimmerman, M. Global perspectives in endocrinology: coverage of iodized salt programs and iodine status in 2020 / M.Zimmerman, M.Andersson // European Journal of Endocrinology. 2021 July 1. Vol.185, No.1. P.R13–R21.
- Распространенность факторов риска неинфекционных заболеваний в Республике Беларусь STEPS 2016 [Электронный ресурс]. Режим доступа: https://www.euro.who.int/__data/assets/pdf_file/0020/348014/STEPS-Report-for-site-RU-webpage-29082017.pdf. Дата доступа: 27.07.2021.
- 3. *Mattes, R.D.* Relative contributions of dietary sodium sources / R.D.Mattes, D.Donnelly // Journal of the American College of Nutrition. 1991. Vol.10, No.4. P.383–393.

- Информирование о риске как элемент устойчивости стратегии ликвидации йоддефицитных заболеваний в Беларуси / Е.В.Федоренко, Н.Д.Коломиец, Т.В.Мохорт, А.Н.Волченко, Е.Г.Мохорт, С.В.Петренко, С.И.Сычик // Анализ риска здоровью. 2019. №1. С.58–67.
- 5. European Society for Paediatric Endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism / J.Leger [et al.] // J Clin Endocrinol Metab. 2014. Vol.99, No.2. P.363–384.
- 6. Increasing the iodine concentration in the Swiss iodized salt program markedly improved iodine status in pregnant women and children: a 5-y prospective national study / M.B.Zimmermann [et al.] // Am J Clin Nutr. 2005. Vol.82, No.2. P.388–392.
- 7. *Rastogi*, *M.V.* Congenital hypothyroidism / M.V.Rastogi, S.H.LaFranchi // Orphanet J Rare Dis. 2010. Vol.5. P.17.
- Assessment of the Iodine Deficiency Disorders and Monitoring their Elimination / World Health Organization; International Council for the Control of the Iodine Deficiency Disorders; United Nations Children's Fund. – Geneva: WHO, 2007.
- Динамика йодного обеспечения и показателей тиреоидной системы в группах риска по йододефициту в сельских регионах Беларуси / С.В.Петренко, Т.В.Мохорт, Н.Д.Коломиец, Е.В.Федоренко, Е.Г.Мохорт, Б.Ю.Леушев, О.А.Бартошевич, Г.Е.Хлебович // Медико-биологические проблемы жизнедеятельности. – 2017. – №1 (17). – С.163–167.
- 10. *Velasco, I.* The role of levothyroxine in obstetric practice / I.Velasco, P.Taylor // Ann Med. 2018. Vol.50, No.1. P.57–67.
- 11. Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum / E.K.Alexander [et al.] // Thyroid. – 2017. – Vol.27, No.3. – 115 p.
- 12. Клинические протоколы по эндокринологии (взрослое население) (проект) [Электронный ре-

- cypc]. Режим доступа: https://makaenka17med.by/respublikanskij-tsentr-endokrinologii/informatsiyadlya-spetsialistov-endokrinologicheskoj-sluzhby/klinicheskie-protokoly-po-endokrinologii-vzrosloenaselenie. Дата доступа: 27.07.2021.
- 13. Об утверждении клинического протокола «Медицинское наблюдение и оказание медицинской помощи женщинам в акушерстве и гинекологии»: постановление Министерства здравоохранения Респ. Беларусь, 19 февр. 2018 г., №17 // ЭТАЛОН. Законодательство Республики Беларусь / Нац. центр правовой информ. Респ. Беларусь. Минск, 2021.
- 14. Age-specific incidence rates (IR) of the three most common nosological types of hyperthyroidism in Denmark (Graves' disease, multinodular toxic goitre and solitary toxic adenoma) / Allan Carle [et al.] // European Journal of Endocrinology. 2011. Vol.164, No.5. P.801–809.
- 15. Vanderpump, M.P. UK Iodine Survey Group Iodine status of UK schoolgirls: a cross-sectional survey / M.P.Vanderpump on behalf of the British Thyroid Association // Lancet. 2011. Vol.377. P.2007–2012
- 16. Iodine status of teenage girls on the island of Ireland / K.Mullan [et al.] // Eur J Nutr. -2019. Vol.59. P.1859–1867.
- 17. Guidance on the Monitoring of Salt Iodization Programmes and Determination of Population Iodine Status. UNISEF, 2018.

IODINE SUPPLYAND IODINE DEFICIENCY DISEASES: CURRENT SITUATION OF PROBLEM IN THE REPUBLIC OF BELARUS

- ¹ T.V.Mokhort, ² N.D.Kolomiets, ³ S.V.Petrenko, ⁴ E.V.Fedorenko, ¹ E.G.Mokhort
- ¹ Belarusian State Medical University, 83, Dzerzhinski Ave., 220116, Minsk, Republic of Belarus
- ² Belarusian Medical Academy of Postgraduate Education, 3, building 3, P.Brovki Str., 220013, Minsk, Republic of Belarus
- ³ Sakharov International State Ecological Institute of Belarusian State University, 23/1 Dolgobrodskaya Str., 220070, Minsk, Republic of Belarus
- ⁴ Scientific and Practical Centre of Hygiene, 8, Akademicheskaya Str., 220012, Minsk, Republic of Belarus

The Republic of Belarus has been a territory free from iodine deficiency for 20 years and belongs to countries with optimal iodine supply by data of the International Iodine Network. The strategy chosen in the Republic of Belarus based on usage of iodized salt in food production demonstrates a stable result. It is confirmed not only by calculated data on consumption of iodine with food, but also by dynamics of iodine deficiency diseases and dynamic monitoring of ioduria.

Keywords: iodine supply; thyroid gland; iodine deficiency; hypothyroidism; iodized salt; iodine deficiency prevention.

Сведения об авторах:

Мохорт Татьяна Вячеславовна, д-р мед. наук, профессор; УО «Белорусский государственный медицинский университет», зав. кафедрой эндокринологии; тел.: (+37517) 2920487; e-mail: endokrin@bsmu.by.

Коломиец Наталья Дмитриевна, д-р мед. наук, профессор; ГУО «Белорусская медицинская академия последипломного образования», зав. кафедрой эпидемиологии и микробиологии; тел. (+37517) 3903341.

Петренко Сергей Владимирович, канд. мед. наук, доцент; «Международный государственный экологический институт имени А.Д.Сахарова» Белорусского государственного университета, доцент кафедры экологической медицины и радиобиологии, руководитель научно-исследовательской лаборатории антропоэкологии и общественного здоровья; тел.: (+37525) 6121410; e-mail: petrenko51@yahoo.com.

Федоренко Екатерина Валерьевна, канд. мед. наук, доцент; РУП «Научно-практический центр гигиены», зам. директора по сопровождению практического санитарно-эпидемиологического надзора и работе с ЕЭК.

Мохорт Елена Геннадьевна, канд. мед. наук, доцент; УО «Белорусский государственный медицинский университет», доцент кафедры эндокринологии.

Поступила 04.08.2021 г.