К.В. Суббот

РАЗРАБОТКА СОСТАВА И ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ТВЕРДЫХ ЖЕЛАТИНОВЫХ КАПСУЛ, СОДЕРЖАЩИХ ЭКСТРАКТ FOMITOPSIS PINICOLA

Научный руководитель: канд. хим. наук, доц. Г.И. Горбацевич Кафедра фармацевтической химии с курсом повышения квалификации и переподготовки

Белорусский государственный медицинский университет, г. Минск

K.V. Subbot

DEVELOPMENT OF THE COMPOSITION AND MANUFACTURING TECHNOLOGY OF HARD GELATIN CAPSULES CONTAINING FOMITOPSIS PINICOLA EXTRACT

Tutor: associate professor H.I. Harbatsevich

Department of Pharmaceutical Chemistry with Advanced Training and Retraining Course Belarusian State Medical University, Minsk

Резюме. Исследование направлено на разработку технологии изготовления капсул, содержащих экстракт F. pinicola. Определен состав капсульной массы, включающий в себя лактозу моногидрат, экстракт трутовика окаймленного, спирт этиловый 70%. Разработана методика получения массы для гранулирования. Исследованы показатели сыпучести для различных по размеру фракций гранул. Наилучшую сыпучесть показывают фракции 125-180 мкм и 90-125 мкм со значениями $4,0\pm0,2$ г/с и $4,5\pm0,4$ г/с соответственно. Экспериментально подтверждены преимущества вышеперечисленных фракций путем исследования однородности массы и однородности содержания действующего вещества в капсулах.

Ключевые слова: капсулы, гранулы, трутовик окаймленный, сыпучесть, фенольные соединения.

Resume. The study focuses on developing a technology for manufacturing capsules containing F. pinicola extract. The composition of the capsule mass has been determined, including lactose monohydrate, bordered tinder extract, and 70% ethyl alcohol. A method for preparing the granulation mass has been developed. The flowability parameters for granules of various size fractions have been studied. The best flowability was observed in fractions of 125–180 μ m and 90–125 μ m, with values of 4.0±0.2 g/s and 4.5±0.4 g/s, respectively. The advantages of the aforementioned fractions were experimentally confirmed through studies of mass uniformity and active substance content uniformity in the capsules.

Keywords: capsules, granules, Fomitopsis pinicola, fluidity, phenolic compounds.

Актуальность. Трутовые грибы – богатый источник биологически активных соединений и перспективное сырье для фармацевтической промышленности. окаймленный содержит широкий спектр веществ: ланостановой структуры, фенольные и стероидные соединения, полисахариды βглюканового типа, которые отвечают за противоопухолевую, противовоспалительную, антимикробную и антиоксидантную активность. Fomitopsis pinicola активно применяется в традиционной медицине Китая и Кореи, а также входит в состав гомеопатических препаратов. Разработка капсул с экстрактом трутовика окаймленного является актуальной задачей, так как данная лекарственная форма обладает рядом преимуществ: защита экстрактивных веществ от внешних факторов воздействия, возможность расщепления в необходимом отделе ЖКТ, корригирующая способность, точность дозирования и эстетичность внешнего вида.

Цель: разработка состава и технологии твердых желатиновых капсул с экстрактом трутовика окаймленного.

Задачи:

- 1. Разработка технологии введения экстракта в порошкообразную смесь вспомогательных веществ;
 - 2. Получение гранул различных фракций;
 - 3. Изготовление капсул;
 - 4. Оценка качества изготовленных капсул.

Материалы и методы. Плодовые тела трутовика окаймленного были высушены при температуре 25-30 °C в течение 7 дней. Экстракт был получен методом перколяции, где в качестве экстрагента использовался этанол 70%.

Для введения густого экстракта в порошкообразную смесь вспомогательных веществ экстракт, предварительно растворенный в этаноле 70%, смешали с крахмалом. Смесь поместили в круглодонную колбу и выпарили на роторном испарителе IKA® RV 3 есо при температуре 45-50°С и давлении 100 мбар. Осажденный на крахмале экстракт извлекли из колбы и измельчили в ступке, после чего добавили лактозу и перемешали.

Другим методом введения было прямое добавление к вспомогательному веществу (лактозе) густого экстракта. Отвесили необходимое количество лактозы, затем перенесли часть в ступку и добавили небольшую порцию экстракта, которую интенсивно растирали до получения однородной порошкообразной смеси. Полученный порошок отсыпали, а затем повторили дробное растирание экстракта с лактозой. По окончании процесса полученные порции порошка смешали до однородности.

Для получения гранул был использован метод влажного гранулирования. Порошкообразную смесь предварительно увлажнили этанолом 70% (0,28 г на 10,8 грамма смеси) и тщательно перемешали. Полученную влажную массу протерли через сито Retsch с размером ячейки 1,4 мм и высушили полученные гранулы в сухожаровом шкафу ГП-40-3 при температуре 40 °C.

Испытание на сыпучесть проводили с использованием воронки 48 мм и диаметром отверстия 6 мм. В сухую воронку, выходное отверстие которой закрыто, поместили без уплотнения навеску 4,0 г гранул. После открытия отверстия определили время (c), необходимое для истечения испытуемого образца из воронки.

Определение однородности массы для единицы дозированного ЛС проводили путем взвешивания невскрытой капсулы и пустой оболочки. Масса содержимого определялась по разнице между двумя значениями. Проанализировали 5 единиц ЛС.

Испытание однородности содержания действующего вещества в единице дозированного ЛС основывалось на количественном определении содержания фенольных соединений методом Фолина-Чокальтеу для 5 капсул. Для приготовления основных растворов в мерной колбе на 25,0 мл растворили 0,1 г содержимого капсулы

с использованием этанола 70%. Аликвоту, равную 1,00 мл, перенесли в пробирку, прибавили 1,00 мл воды дистиллированной, 0,100 мл реактива Фолина-Чокальтеу и 0,500 мл раствора натрия карбоната 10%. Оптическую плотность измеряли при длине волны λ =725 нм. Расчет количественного содержания фенольных соединений проводили по калибровочному графику, построенному с использованием стандартных растворов галловой кислоты. Далее определили содержание фенольных соединений (мг) в одной капсуле и вычислили отклонение от среднего значения.

Гигроскопичность гранулята определяли по методике: навеску 1 г поместили в предварительно взвешенный стеклянный бюкс, который затем закрыли крышкой и взвесили. После этого образец поместили на решётку подготовленного эксикатора, заполненного водой, сняли крышку с бюкса и выдержали образец в течение 24 ч при температуре 25 °C. По истечении времени бюкс извлекли из эксикатора и взвесили.

Результаты и их обсуждение. Выход экстракта из измельченного высушенного сырья составил 20,37%, а потеря в массе при высушивании -4,08%.

Полученный экстракт имеет вязкую консистенцию, что делает необходимым использование вспомогательных веществ для преобразования его в порошок или гранулы с оптимальными показателями текучести и высокой точностью дозирования. Для этой цели были изучены такие вспомогательные вещества как крахмал картофельный, лактозы моногидрат и магния стеарат.

Лактозы моногидрат используется как наполнитель и связующее вещество. Магния стеарат выполняет роль антифрикционного вещества. Крахмал картофельный выступает наполнителем, разрыхлителем и связующим.

Было изучено 2 состава гранул, с учетом содержания 100 мг экстракта в 1 капсуле:

- 1) Лактозы моногидрат, крахмал, экстракт в соотношении 4,4: 4,4: 2;
- 2) Лактозы моногидрат, экстракт в соотношении 8,8 : 2.

Для повышения сыпучести в процессе исследования гранулы опудрили магния стеаратом в количестве 0,1 грамм на 10,8 грамм смеси.

В таблице 1 приведены средние значения по результатам трех измерений. Гранулы, имеющие состав 1, неопудренные, с размером 355-1400 мкм полностью не высыпались из воронки. Причиной этому могут служить крупный размер и шероховатая поверхность гранул, которые затрудняют их скольжение. Наилучшие результаты сыпучести наблюдаются в случае фракции 180-355 мкм состава 2 и 3. Статистически значимой разницы между сыпучестью фракций двух составов нет.

Табл. 1. Значения сыпучести гранул разного состава и размера, содержащие экстракт трутовика окаймленного

No	Состав гранул	Размер гранул, мкм					
		355-		355-	1400		
		(неоп	удр.)	(опу	удр.)	180-355	(опудр.)
		t, c	v, Γ/c	t, c	v, Γ/c	t, c	v, Γ/c
	Лактоза:крахмал:экстракт						
1	(этанол 70% вспом. ж.)	8	-	4,33	0,92	∞	-
	Лактоза:экстракт (этанол 70%						
2	вспом. ж.)	3,26	1,23	1,72	2,33	1,13	3,60

Продолжение таблицы 1

	Лактоза:экстракт (раствор						Í
3	ПВС 1% вспом. ж.)	3,70	1,08	1,74	2,30	0,95	4,24

Таким образом, для получения капсул использовали в качестве вспомогательного вещества лактозы моногидрат, а смесь для гранулирования увлажняли этанолом 70%.

Были получены 4 фракции гранул разного размера: 90-125 мкм, 125-180 мкм, 180-355 мкм и 355-1400 мкм. С уменьшением размеров гранул увеличивается их сыпучесть (табл. 2). Наилучшие результаты показывают фракции 125-180 мкм и 90-125 мкм. Значение t-критерия, равное 0,28, указывает на отсутствие статистически значимых различий между этими двумя группами (при уровне значимости 0,05). Это говорит о схожих характеристиках их сыпучести, что делает обе фракции перспективными для дальнейшего использования. T-критерий, рассчитанный для фракций 180-355 мкм и 125-180 мкм, равен 0,002, что подтверждает достоверное преобладание сыпучести размеров гранул от 90 до 125 мкм.

Табл. 2. Значения сыпучести гранул разного размера состава 2

Размер гранулята, мкм	Сыпучесть, г/с
355-1400	2,8±0,2
180-355	3,3±0,3
125-180	4,0±0,2
90-125	4,5±0,4

Показано, что относительное стандартное отклонение от средней массы содержимого капсулы увеличивается с уменьшением размера гранул (табл. 3). Однако с уменьшением размеров гранулята снижается относительное стандартное отклонение от среднего содержания фенольных соединений в капсуле (табл. 4). Наименьшее значение демонстрирует гранулят 125-180 мкм. Таким образом, использование фракции 125-180 мкм обеспечивает высокую однородность массы содержимого капсул и однородность дозирования действующего вещества при сохранении достаточной сыпучести образца.

Табл. 3. Однородность массы для единицы дозированного ЛС (капсула), n = 5

Размер гранулята, мкм	Средняя масса содержимого капсулы, г	RSD, %
355-1400	0,3671	1,07
180-355	0,3772	1,19
125-180	0,3952	1,94
90-125	0,3173	2,65

Табл. 4. Однородность содержания действующего вещества в единице дозированного ЛС (капсула),

,	<i>i</i> 3		
	Размер гранулята, мкм	Средняя масса фенольных	RSD, %
		соединений в эквивалентах	
		галловой кислоты в 1 капсуле, мг	

Продолжение таблицы 4

355-1400	3,85	6,12
180-355	4,29	5,51
125-180	3,70	4,05
90-125	3,26	4,87

В ходе контроля качества капсул с размером гранул 125-180 мкм определили, что ни одно значение содержимого капсул не отклоняется от среднего более чем на 7,5% [6]. Отклонения в количественном содержании фенольных соединений не выходят за пределы 85-115% и 75-125% от среднего содержания. Таким образом, все капсулы соответствуют требованиям ГФ РБ и по показателям однородность массы и однородность содержания действующего вещества в единице дозированного ЛС [6].

Для стабильной сыпучести гранулята необходимо обеспечить его низкую гигроскопичность, которая для фракции 90-125 мкм составила 6,4 %, что, согласно ОФС 5.11 ГФ РБ, позволяет отнести их к гигроскопичным [6]. В связи с этим гранулят перед наполнением капсул рекомендуется хранить в закрытой таре.

Выводы. В работе получен экстракт *F. pinicola* методом перколяции с выходом 20,37% и разработана технология приготовления капсульной массы. Определен ее состав, включающий в себя лактозы моногидрат, экстракт трутовика окаймленного в соотношении 8,8:2, спирт этиловый 70% как связывающее для грануляции (0,28 г на 10,8 грамма смеси). Исследованы и проанализированы показатели сыпучести для различных по размеру фракций гранул данного состава. Наилучшие результаты показывают гранулы размером 125-180 мкм со значением $4,0\pm0,2\,$ г/с. Капсулы, содержащие данную фракцию гранул, соответствуют требованиям ГФ РБ по показателям однородность массы и однородность дозирования. В ходе исследования установлено, что фракция гранул размером 90-125 мкм обладает гигроскопичностью 6,4%, что, согласно ОФС 5.11 ГФ РБ, классифицирует их как гигроскопичные. В связи с этим перед наполнением капсул гранулят рекомендуется хранить в закрытой таре.

Литература

- 1. Review of Chemical Constituents and Pharmacology of Brown-Rot Fungus Fomitopsis pinicola / Muhammad Toseef Zahid [и др.] // Journal of Natural Sciences Research. 2020. № 4. Р. 58-68.
- 2. Белова, Н.В. Ланостановые тритерпеноиды и стероиды высших грибов / Н.В. Белова // Advances in Biology & Earth Sciences. -2016. -V.1. -№.2. -C. 107-120
- 3. Lanostane Triterpenoids and Triterpene Glycosides from the Fruit Body of Fomitopsis pinicola and Their Inhibitory Activity against COX-1 and COX-2 / Yoshikawa, K [и др.] // Journal of natural products. -2017. N = 68(1). P. 69-73.
- 4. Characterization and antioxidant activities of extracellular and intracellular polysaccharides from Fomitopsis pinicola. / Hao, L [и др.] // Carbohydrate polymers. 2016. № 141. P. 54-59.
- 5. Phenolic Compounds and Antioxidant Activity in Some Species of Polyporoid Mushrooms from Poland / Katarzyna Sułkowska-Ziaja [и др.] // International Journal of Medicinal Mushrooms. 2015.
- 6. Государственная фармакопея Республики Беларусь. (ГФ РБ II): разработана на основе Европейской фармакопеи: в 2 т. / М-во здравоохранения Респ. Беларусь, Центр экспертиз и испытаний в здравоохранении. Молодечно: Победа, 2012–2016. Т. 1: Общие методы контроля качества лекарственных средств / под общ. ред. А. А. Шерякова, 2012. 1220 с.