УДК [61+615.1] (06) ББК 5+52.81 A 43 ISBN 978-985-21-1865-1

А.А. Кладиев

ИССЛЕДОВАНИЕ ХИМИЧЕСКОЙ ДЕСТРУКЦИИ МЕТОТРЕКСАТА МЕТОДОМ ВЭЖХ

Научный руководитель: канд. фарм. наук, доц. Р.И. Лукашов Кафедра фармацевтической химии с курсом повышения квалификации и переподготовки

Белорусский государственный медицинский университет, г. Минск

A.A. Kladiev STUDY OF THE CHEMICAL DEGRADATION METHOTREXATE BY HTLC METHOD

Tutor: PhD, associate professor R.I. Lukashov

Department of Pharmaceutical Chemistry with the Course of Advanced Training
and Retraining

Pelagusian State Medical University, Minch

Belarusian State Medical University, Minsk

Резюме. Для химической деструкции метотрексата были выбраны реагенты и наиболее оптимальным по результатам полученных хроматограмм является реактив Фентона.

Ключевые слова: химическая деструкция, метотрексат, ВЭЖХ-УФ.

Resume. Reagents were selected for chemical degradation of methotrexate and the most optimal according to the results of the obtained chromatograms is Fenton's reagent.

Keywords: chemical degradation, methotrexate, HPLC-UV.

Актуальность. Метотрексат применяется для лечения различных онкологических заболеваний, тяжелых форм псориаза и ревматоидного артрита. Препарат обладает повышенной токсичностью для человека, что необходимо учитывать при его использовании и дальнейшей утилизации его остатков.

Для утилизации отходов цитостатических лекарственных средств применяют различные походы: пиролитическое сжигание при температуре не ниже 1200°С или захоронение на специальных полигонах [1]. Оба метода имеют свои недостатки: в первом случае необходимость специального оборудования для создания и поддержания нужной температуры, во втором случае — возможность загрязнения окружающей среды токсичными отходами.

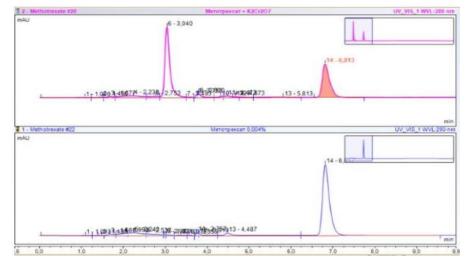
Цель: поиск химических методов деструкции метотрексата, которые будут более доступными и безопасными, чем описанные выше. Задачи исследования: выбор оптимальных агентов деструкции, определение оптимальной концентрации, оптимизация метода и его оценка.

Материалы и методы. В качестве объекта исследования был выбран раствор для инъекции метотексата 10мг/мл. Метод деструкции: исследуемый раствор смешивали с выбранным реактивом в соотношении 1:9, разводили до концентрации 0.004% и нагревали на водяной бане в течении одного часа при температуре 80°C. Для химической деструкции метотрексата были использованы следующие реактивы: 0.1 М раствор HCl, 0.1 М раствор NaOH, 30% раствор H_2O_2 , смесь 30% раствора H_2O_2 с 0.1 М NaOH, 0.0167 М раствор $K_2Cr_2O_7$; 0.02 М раствор KMnO₄; реактив Фентона

(смесь 5 мл 0.1 M раствора FeSO₄ с 5 мл 30% H_2O_2). Исследование проводилось на основе статьи из американской фармакопеи.

Метод детекции: обращенно-фазовая высокоэффективная жидкостная хроматография.

Прибор: жидкостный хроматограф Ultimate 3000 с диодно-матричным детектором, колонка: 4.6-мм х 25 см, температура 15°С, подвижная фаза состоит из буфера и ацетонитрила, где буфер - это раствор NaH_2PO_4 с концентрацией 3.4 г/л, доведенный до pH 5.8.


Соотношение буфера к ацетонитрилу 19:1 в фазе A, соотношение в фазе Б 1:1. Скорость потока 1 мл/мин.

Результаты и их обсуждение. Первостепенной задачей исследования было установление оптимальной концентрации, были выбраны 0.004 и 0.002% концентрации раствора метотрексата. Из полученных результатов хроматографирования была выбрана концентрация 0.004%.

Можно предположить следующие реакции взаимодействия деструктирующих агентов с раствором метотрексата. В молекуле метотрексата амидная связь связывает фрагменты птероевойкислоты и глутаминовой кислоты.

Возможна реакция деградации амидной связи, которая катализируется либо кислотой, либо основанием с образованием глутаминовой кислоты и 4-амино- 4-дезокси-10-метилптероевой кислоты. Возможные продукты реакции раствора метотрексата с 30% пероксидом водорода могут включать окисленные формы метотрексата, а также, в зависимости от условий, другие побочные продукты: уксусная кислота или формальдегид.

При использовании в качестве деструктирующих агентов дихромата калия, перманганата калия и реактива Фентона возможно разрушение структуры метотрексата со значительным снижением его концентрации.

Рис. 1 – Хроматограмма раствора метотрексата после реакции с раствором K2Cr2O

Рис. 2 – Хроматограмма раствора метотрексата после реакции с раствором Фентона

Табл. 1. Сводная таблица результатов анализа деструкции метотрексата

	Время выхода, мин	Относительная площадь пика, %	Высота пика	Уменьшение площади, %
Метотрексат	6.8	69	100	0
раствор НСІ, 0.1 М	7.2	30	106	3
раствор NaOH, 30%	6.9	49	105	15
раствор Н2О2	6.9	36	82	12,5
смесь 30% раствора H ₂ O ₂ с 0.1 M NaOH	6.9	36	82	12,5
раствор КМпО ₄ 0.0167 М	6.8	31	55	45
раствор К2Сг2О7	6.8	6	8	91,5
реактив Фентона	Не определяется	Не определяется	Не определяется	100%

Исходя из этого можно предположить, что растворы HCl, NaOH и смесь H_2O_2 с NaOH в значимой степени не деструктировали структуру метотрексата, так как существенно не изменилась полученная в результате их взаимодействия хроматограмма. При исследовании влияния раствора $KMnO_4$ на раствор метотрексата заметна существенная деструкция, однако необходимо подобрать более подходящие условия, чтобы добиться лучшего результата. В случае же взаимодействия раствора метотрексата с растворами $K_2Cr_2O_7$ и реактива Фентона произошла значимая деструкция структуры исследуемого образца.

Выводы. В ходе проведенной работы по химической деструкции раствора метотрексата было установлено, что оптимальными реактивами для достижения поставленной цели являются

 $0.02~\mathrm{M}$ раствор $\mathrm{K}_2\mathrm{Cr}_2\mathrm{O}_7$ и реактив Фентона (смесь 5 мл $0.1~\mathrm{M}$ раствора FeSO_4 с 5 мл $30\%~\mathrm{H}_2\mathrm{O}_2$), которые уменьшают концентрацию цитостатического препарата на $91.5~\mathrm{u}$ 100% соответственно. Другие реактивы, использованные в исследовании - $0.1~\mathrm{M}$

УДК [61+615.1] (06) ББК 5+52.81 А 43 ISBN 978-985-21-1865-1

раствор HCl, 0.1 M раствор NaOH, 30% раствор H_2O_2 , смесь 30% раствора H_2O_2 с 0.1 M NaOH, 0.0167 M раствор KMnO₄ - не эффективны для химической деструкции метотрексата, возможно, в некоторых случаях следует изменить условия, либо полностью отказаться от них.

Литература

1. Постановление Министерства здравоохранения Республики Беларусь и Министерства природных ресурсов и охраны окружающей среды Республики Беларусь от 2 сентября 2024 г. № 137/44 "О порядке обращения с медицинскими отходами".