УДК [61+615.1] (06) ББК 5+52.81 А 43 ISBN 978-985-21-1865-1

Д.С. Ганник

ОБОСНОВАНИЕ ВЫБОРА ЭКСТРАГЕНТА БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ ПЛОДОВЫХ ТЕЛ PIPTOPORUS BETULINUS

Научный руководитель: канд. хим. наук, доц. Г.И. Горбацевич Кафедра фармацевтической химии с курсом повышения квалификации и переподготовки

Белорусский государственный медицинский университет, г. Минск

D.S. Hannik JUSTIFICATION OF THE CHOICE OF AN EXTRACTANT OF BIOLOGICALLY ACTIVE COMPOUNDS FROM PIPTOPORUS BETULINUS

Tutor: PhD, associate professor H.I. Harbatsevich
Department of Pharmaceutical Chemistry with Advanced Training
and Retraining Course
Belarusian State Medical University, Minsk

Резюме. В исследовании изучался выбор оптимального экстрагента для выделения биологически активных веществ из плодовых тел трутовика берёзового. Эксперименты показали, что 90% этиловый спирт наиболее эффективно извлекает фенольные соединения и тритерпеноиды, обладающие противоопухолевыми и антимикробными свойствами. Таким образом, этиловый спирт является перспективным экстрагентом для получения экстрактов с высоким содержанием целевых биологически активных веществ.

Ключевые слова: трутовик березовый, экстрагент, фенолы, экстрактивные вещества, тритерпеноиды.

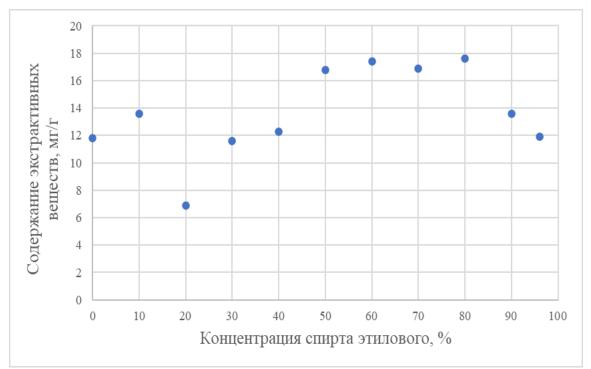
Resume. The study examined the choice of the optimal extractant for the isolation of biologically active substances from the fruit bodies of birch tinder. Experiments have shown that 90% ethyl alcohol extracts phenolic compounds and triterpenoids with antitumor and antimicrobial properties most effectively. Thus, ethyl alcohol is a promising extractant for obtaining extracts with a high content of target biologically active substances.

Keywords: Piptoporus betulinus, extractant, phenols, extractive substances, triterpenoids.

Актуальность. В настоящее время возрос интерес к поиску и изучению биологически активных соединений среди высших базидиомицетов. Трутовик берёзовый содержит сложные многокомпонентные комплексы БАВ, что делает его перспективным объектом исследования. При получении экстрактов *Piptoporus beulinus* ключевым моментом является правильный выбор экстрагента, поскольку он напрямую влияет на эффективность извлечения целевых соединений. Экстрагент должен обеспечивать полноту извлечения биологически активных веществ при минимальном извлечении балластных веществ и максимальную скорость экстрагирования.

Цель: обоснование выбора оптимального экстрагента для выделения БАВ из плодовых тел трутовика берёзового.

Задачи: изучить влияние природы растворителя на содержание экстрактивных веществ, фенольных соединений и тритерпеноидов.


Материалы и методы. Объектом данного исследования являются плодовые тела трутовика берёзового, собранные в Минской области в июле-августе 2024 года. Исследуемые образцы были высушены воздушно- теневым методом при 25-30 °C в течение 5-7 дней. Затем измельчены при помощи молотковой мельницы (диаметр отверстий сита 2 мм). В качестве экстрагента использовали воду и спирт этиловый различных концентраций.

Определение суммарного содержания терпеновых и стероидных соединений проводится спектрофотометрическим методом с использованием реактива Либермана-Бурхарда [1].

Определение концентрации фенольных соединений проводится спектрофотометрически методом Фолина-Чокальтеу [2].

Выход суммы экстрактивных веществ проводили гравиметрическим методом [3].

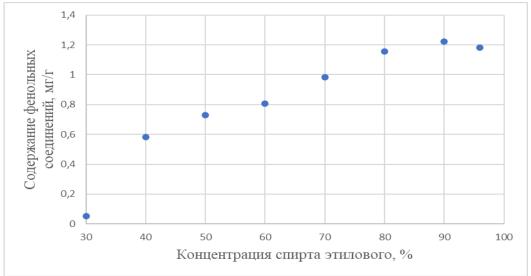
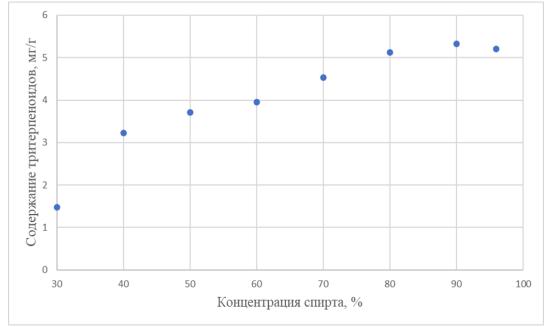

Результаты и их обсуждение. По результатам исследования максимальный выход экстрактивных веществ наблюдается при использовании в качестве экстрагента 80% этилового спирта -17,6 мг/г (рисунок 1)

Рис. 1 — Влияние концентрации спирта этилового на выход экстрактивных веществ в сырье трутовика березового


Результат определения концентрации фенольных соединений в экстрактах *Piptoporus betulinus* продемонстрированы на рисунке 2. Наибольшее содержание фенольных соединений (1,2 мг/г) продемонстрировали экстракты на основе 90% этилового спирта.

ISBN 978-985-21-1865-1

Рис 2. — Влияние концентрации спирта этилового на содержание фенольных соединений в сырье трутовика березового

Самые высокие значения суммарного содержания тритерпеновых соединений отмечается при использовании 90% этилового спирта (5,32 мг/г).

Рис. 3 — Влияние концентрации спирта этилового на содержание тритерпеновых соединений в сырье трутовика березового

Выводы. В ходе исследования было установлено, что природа растворителя влияет на степень экстрагирования биологически активных веществ из лекарственного сырья. Этиловый спирт 90% является наиболее подходящим экстрагентом для извлечения фенольных соединений и тритерпеноидов, обладающих противоопухолевой и антимикробной активностью [4]. Он обеспечивает извлечение широкого спектра биологически активных веществ.

УДК [61+615.1] (06) ББК 5+52.81 A 43 ISBN 978-985-21-1865-1

Литература

- 1. Kenny, A. P. The determination of cholesterol by the Liebermann-Burchard reaction / A. P. Kenny // Biochemical Journal. -2015. $-N_{\odot}$ 52. -C. 611-619.
- 2. Singleton, V. L. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent / V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós // Methods Enzymol. Vol. 299. 1999. P. 152–78
- 3. Государственная фармакопея Республики Беларусь: в 2 т.: введ. в действие с 1 янв. 2013 г. приказом М-ва здравоохранения Респ. Беларусь от 25.04.2012 г. № 453. Т. 1: Общие методы контроля качества лекарственных средств / М-во здравоохранения Респ. Беларусь, Центр экспертиз и испытаний в здравоохранени; [под общ. ред. А. А. Шерякова]. Молодечно: Победа, 2012. 406 с.
- 4. Tolstikov, G. A. Betulin and its derivatives. Chemistry and biological activity / G. A. Tolstikov [et al.] // Chemistry for Sustainable Development. 2005. C. 23-29.