УДК [61+615.1] (06) ББК 5+52.81 А 43 ISBN 978-985-21-1865-1

Е.В. Беликова, О.А. Смыслова

ОЦЕНКА СОДЕРЖАНИЯ ГИДРОКСИКОРИЧНЫХ КИСЛОТ В ТРАВЕ ACTPAГAЛА НУТОВОГО (ASTRAGALUS CICER L.) МЕТОДОМ СПЕКТРОФОТОМЕТРИИ

Научный руководитель: канд. фарм. наук У.А. Матвиенко

Кафедра общей биологии, фармакогнозии и ботаники Саратовский государственный медицинский университет имени В.И. Разумовского, г. Саратов

E.V. Belikova, O.A. Smyslova

ESTIMATION OF HYDROXYCINNAMIC ACIDS CONTENT IN ASTRAGALUS CHICKPEA GRASS (ASTRAGALUS CICER L.) BY SPECTROPHOTOMETRY

Tutor: PhD, associate professor U.A. Matvienko

Department of General, Bioorganic and Pharmaceutical Chemistry Saratov State Medical University named after V.I. Razumovsky, Saratov

Резюме. Проведена оценка содержания гидроксикоричных кислот в водно-спиртовых (40%, 70%, 95% этиловый спирт) экстрактах, полученных из травы астрагала нутового (*Astragalus cicer L.*) методом спектрофотометрии в соотношении сырье-экстрагент 1:25. В ходе количественного определения установлено, что максимальное содержание гидроксикоричных кислот в пересчете на кофейную обнаружено в 40% водно-спиртовом извлечении астрагала нутового (1,292 \pm 0,050), минимальное – в 95% (0,243 \pm 0,007).

Ключевые слова: Астрагал нутовый (*Astragalus cicer* L.), экстракт, гидроксикоричные кислоты, спектрофотометрия, реактив Арнова.

Resume. The content of hydroxycinnamic acids in aqueous-alcoholic (40%, 70%, 95% ethyl alcohol) extracts obtained from the herb Astragalus chickpea (*Astragalus cicer* L.) by spectrophotometric method in the ratio of raw material-extragent 1:25 was evaluated. During quantitative determination it was found that the maximum content of hydroxycinnamic acids in terms of caffeic acid was found in 40% aqueous-alcohol extract of chickpea astragalus (1.292 \pm 0.050), the minimum - in 95% (0.243 \pm 0.007).

Keywords: Astragalus chickpea (Astragalus cicer L.), extract, hydroxycinnamic acids, spectrophotometry, Arnow's reagent.

Актуальность. Астрагал нутовый (Astragalus cicer L.) — многолетнее травянистое растение, широко распространенное на территории Европы, Малой Азии и юго-западе Сибири. Трава Astragalus cicer L. содержит флавоноиды, фенольные соединения, сахара, тритерпеновые сапонины, алкалоиды. В народной медицине астрагал нутовый применяется как гипотензивное, диуретическое и седативное средство, для лечения заболеваний сердечно-сосудистой системы и при нарушениях работы органов пищеварения. Ввиду того, что Астрагал нутовый массово произрастает также на территории Саратовской области, а фитохимический состав биологически активных соединений (БАС) растений зависит от многих факторов, в т.ч. от места заготовки растительного сырья актуальным является исследование БАС в траве астрагала нутового, заготовленного на территории Саратовской области.

Цель: исследование гидроксикоричных кислот в траве астрагала нутового, произрастающего на территории Саратовской области.

Задачи:

- 1. Провести количественное определение гидроксикоричных кислот в траве астрагала нутового методом спектрофотометрии с реактивом Арнова.
- 2. Определить оптимальную концентрацию спирта этилового для извлечения гидроксикоричных кислот из травы астрагала нутового.

Материалы и методы. Для исследования была использована высушенная до воздушно-сухого состояния трава астрагала нутового, заготовленная в 2023 году на территории Саратовской области (Калининский р-н, с. Казачка).

Для исследования были использованы свежеприготовленные водно-спиртовые извлечения (40%, 70%, 95% этиловый спирт) из травы анализируемого образца астрагала нутового в соотношении сырьё-экстрагент 1:25.

Количественный анализ выполняли методом спектрофотометрии спектрофотометре СФ-2000 (Россия). В мерную колбу объёмом 10,0 мл добавляли 1,00 мл извлечения, 2 мл 0,5 М раствора кислоты хлористоводородной, 1 мл реактива Арнова (раствор, приготовленный растворением 5 г натрия нитрита и 5 г натрия молибдата в 50 мл воды), и 2 мл раствора натрия гидроксида 8,5%. Полученный раствор доводили до метки этиловым спиртом 70%. Измеряли оптическую плотность 525 HM. испытуемого раствора при длине волны Для приготовления компенсационного раствора в мерную колбу вместимостью 10,0 мл прибавляли 1,00 мл извлечения, 2 мл 0,5 М раствора кислоты хлористоводородной и 2 мл раствора натрия гидроксида 8,5%. Полученный раствор доводили до метки этиловым спиртом 70%. Содержание гидроксикоричных кислот определяли в пересчёте на кофейную кислоту с помощью градуировочного графика.

Результаты и их обсуждение. В результате количественного определения содержание гидроксикоричных кислот в водно-спиртовых извлечениях из травы астрагала нутового (40%, 70%, 95% этилового спирта) в пересчете на кислоту кофейную составило соответственно $1,292 \pm 0,050$, $0,987 \pm 0,007$, $0,243 \pm 0,007$ (P=0,95, n=3). Наилучшая извлекающая способность в отношении гидроксикоричных кислот наблюдается у спирта этилового 40%.

Табл. 1. Статистическая обработка результатов количественного содержания гидроксикоричных кислот в траве астрагала нутового в соотношении сырьё-экстрагент 1:25 методом спектрофотометрии с реактивом Арнова

Концентрация	X	$ar{x}$	S	$S_{ar{x}}$	$\Delta \bar{x}$	$\bar{\varepsilon}$, %
экстрагента, %				-		
40	1,3044	1,292	0,019955	0,011521	0,04954049	3,83
	1,2693					
	1,3033					
70	0,9843	0,987	0,002851	0,001646	0,00707869	0,72
	0,9900					
	0,9873					
95	0,2430	0,243	0,002710	0,001565	0,00672751	2,77
	0,2453					
	0,2399					

Выводы. Наибольшее количество гидроксикоричных кислот в пересчете на кислоту кофейную содержится в водно-спиртовом извлечении из травы астрагала нутового с объёмной долей спирта этилового 40% (1,292 \pm 0,050), наименьшее - 95% (0,243 \pm 0,007).

Литература

- 1. Березуцкий М.А. Нейробиологические эффекты химических соединений видов рода *Astragalus* L. и перспективы их применения в медицине (обзор) / М.А. Березуцкий, Н.А. Дурнова, У.А. Матвиенко. М.: Разработка и регистрация лекарственных средств. 2023. Т. 12. №. 1. С. 199-206.
- 2. Трембаля Я.С. Анатомическое строение вегетативных органов астрагала нутового (Astragalus cicer L.) / Я.С. Трембаля, Л.И. Прокошева, Е.С. Лапина. М.: Фармация и фармакология. 2014. Т. 2. №. 6 (7). С. 33-35.
- 3. Туровец А.В. Количественное определение гидроксикоричных кислот и фенольных соединений в растениях рода Бодяк / А.В. Туровец, Р.И. Лукашев. М.: Фармацевтическая разработка для медицины, косметологии и ветеринарии. 2022. С. 264-267.