УДК [61+615.1] (043.2) ББК 5+52.81 А 43 ISBN 978-985-21-1864-4

Ванкевич У.Д.

ВЛИЯНИЕ АЭРОБНОЙ НАГРУЗКИ НА СОСТОЯНИЕ СИСТЕМЫ КРОВИ

Научные руководители: ассист. Григорьян А.Л., канд. мед. наук, доц. Александров Д.А.

Кафедра нормальной физиологии Белорусский государственный медицинский университет, г. Минск

Актуальность. Ааэробные нагрузки являются распространенным видом физической активности, обеспечивающей поддержание здоровья на высоком уровне. Оценка величины показателей красной крови позволяет определить способность организма адаптироваться к регулярным физическим нагрузкам.

Цель: сравнить влияние различных аэробных нагрузок на величину показателей красной крови у молодых тренированных и нетренированных лиц.

Материалы и методы. Объектом для исследования послужила капиллярная кровь, полученная от 60 здоровых юношей 18-21 года. Забор крови проводился после получения у исследуемых добровольного информированного согласия средним медицинским персоналом РНПЦ спорта. По характеру физической нагрузки испытуемые были разделены на 3 группы: 20 человек, занимающихся водным поло (РЦОП по водным видам спорта) [группа 1]; 20 человек, занимающихся бегом на средние дистанции (РЦОП по легкой атлетике) [группа 2] и 20 человек, не занимающихся спортом на регулярной основе [группа 3, контрольная]. Обработка полученных данных проводилась с использованием методов математической статистики в программах Microsoft Excel и Statistics 8.0. Результаты представлены в виде медианы (Ме), верхнего (Q25) и нижнего (Q75) квартилей. Межгрупповое сравнение проводилось с использованием критерия Манна-Уитни (U) при значимости р <0,05. Значимые отличия в сравнении с группой 1 обозначены символом «*».

Результаты и их обсуждение. Известно, что аэробный тип нагрузки предполагает увеличение кровотока в мышцах для поддержания высокого уровня доставки кислорода к тканям (Patel H. et al., 2017). Помимо увеличения объема кровотока, одним из механизмов адаптации к возросшему уровню потребления кислорода мышечными тканями является повышение содержания эритроцитов и гемоглобина в единице объема крови, что позволяет увеличить ее кислородную емкость. Мы установили, что в группе 1 содержание эритроцитов было наибольшей по сравнению с другими группами и составило 5,5×10¹²/л (5,0;5,8), в группе 2 и 3 медиана содержания эритроцитов составила 4,7×10¹²/л (4,6;4,9) и 4,7×10¹²/л (4,6;5,25)*, соответственно. Отличия наблюдались также и в содержании гемоглобина: группа 1 – 173 г/л (164;183), группа 2 – 151 г/л (147;154,7)*, контрольная группа – 151 г/л (142;160)*. Несмотря на увеличение содержания величины гемоглобина в крови, отличий в величинах эритроцитарных индексов между группами выявлено не было. Мы полагаем, что в группе 1 увеличение содержания эритроцитов и гемоглобина в крови связано с необходимостью поддержания высокого метаболизма мышц при регулярной длительной физической нагрузке, вследствие чего и происходит стимуляция эритроцитопоэза.

Выводы. У тренированных лиц, занимающихся водным поло, стимуляцияя эритропоэза протекает более интенсивно по сравнению с тренированными лицами, занимающимся бегом на средние дистанции, и с нетренированными людьми. Это может быть связано с регулярной длительной задержкой дыхания, стимулирующей эритропоэз.