Рубникович С.П.¹, Кузьменко Е.В.², Денисова Ю.Л.¹, Андреева В.А.¹ РЕНТГЕНОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ В КОСТНОЙ ТКАНИ ПРИ ПРИМЕНЕНИИ МЕЗЕНХИМАЛЬНЫХ СТВОЛОВЫХ КЛЕТОК

¹ Белорусский государственный медицинский университет, Минск, Республика Беларусь
² Белорусская медицинская академия последипломного образования, Минск, Республика Беларусь

Актуальность проблемы. Для применения клеточных технологий в стоматологии, более глубокого понимания морфологических и патофизиологических процессов, происходящих в тканях периодонта, а также разработки эффективных методов лечения 247

требуется проведение экспериментальных исследований. При этом моделирование болезней периодонта у экспериментального животного следует проводить с учетом необходимости создания максимально схожих с человеком условий и параметров. Помимо создания эффективной экспериментальной модели, необходимо выбрать корректные методы объективной оценки полученных результатов.

Вышеизложенное свидетельствует о целесообразности проведения экспериментально-клинических исследований по применению в стоматологии направленных на активацию процессов костной регенерации мезенхимальных стволовых клеток жировой ткани, что позволит повысить эффективность лечения пациентов с заболеваниями периодонта.

Цель исследования — установить характер и динамику рентгенологических изменений в костной ткани при применении мезенхимальных стволовых клеток и их дифференцированных в остеогенном направлении аналогов, иммобилизованных на биодеградируемом носителе, для лечения хронического периодонтита в эксперименте.

Материал и методы исследования. В качестве экспериментальных животных использовали кроликов обоего пола породы шиншилла в количестве 45 особей. Экспериментальные животные в соответствии с запланированным методом лечения были разделены на 5 однородных групп: 1 контрольная и 4 опытные группы. Первым этапом исследования являлось создание модели экспериментального периодонтита. Под действием наркоза, в стерильных условиях после отслоения слизисто-надкостничного лоскута на вестибулярной поверхности нижней челюсти в области межкорневой перегородки центральных резцов с помощью твердосплавного шаровидного бора формировался костный дефект диаметром 2 мм и глубиной 4 мм. В контрольной группе сформированные у кроликов костные дефекты заполнялись кровяным сгустком, и операционные раны ушивались. В І группе исследования костные полости заполнялись стерильным биоматериалом в виде мембран на основе костного коллагена размером 5 мм × 5 мм. Во II опытной группе сформированные дефекты костной ткани заполнялись коллагеновыми мембранами того же размера со взвесью культур 50 тысяч аллогенных мезенхимальных стволовых клеток жировой ткани (МСК ЖТ), в III группе – со взвесью 50 тысяч аллогенных остеоиндуцированных МСК ЖТ, в IV группе исследования - со взвесью смеси культур 25 тысяч аллогенных МСК ЖТ и 25 тысяч аллогенных остеоиндуцированных МСК ЖТ. После внесения соответствующих материалов в сформированные костные полости операционные раны у животных во всех группах исследования ушивались.

Для характеристики плотности костной ткани использовался коэффициент абсорбции Хаунсфилда, визуальным отображением которого являлись градации серого цвета. Плотностные характеристики костной ткани выражались в условных единицах Хаунсфилда (HU). Анализ плотности костной ткани проводился последовательно на трех томографических срезах (сагиттальном, аксиальном и коронарном) в точке их пересечения с «захватом» зоны костного дефекта, ранее сформированного в области межкорневой перегородки центральных резцов. Включение зоны для последующего анализа осуществлялось с помощью «эллипса» – инструмента программы Romexis Viewer. Толщина анализируемых срезов во всех группах составляла 0,2 мм. Значение плотности костной ткани для исследуемой области определялось как среднее арифметическое от показателей минеральной плотности в каждом срезе. Полученные данные обрабатывались статистически с помощью программ «Statistica» (Version 10, StatSoft Inc., США) и «Excel».

Результаты исследования. Рентгенологическая картина остеорепарации на 14 Рентгенологическое оперативного вмешательства. выполненное на 14 сутки после оперативного вмешательства, позволило установить, что в контрольной группе, а также І группе исследования, в которой пострезекционный дефект мембраной на основе костного коллагена, показатели ширины заполнялся сформированных дефектов не изменились по сравнению с первоначальными (табл. 1) (р>0,05). В обоих случаях границы дефектов имели четкие и ровные контуры.

Таблица 1. Динамика изменений показателей ширины дефектов костной ткани по данным КЛКТ, в мм

Срок	Группы исследования				
наблюдения	Контрольная	І группа	II группа	III группа	IV группа
14 суток	1,89±0,10	1,86±0,08	1,44±0,07	1,32±0,03	1,47±0,08
1 месяц	1,68±0,07	1,35±0,14	$0,65\pm0,05$	$0,45\pm0,11$	0,52±0,09
2 месяца	1,21±0,12	$0,89\pm0,05$	0,12±0,02	$0,00\pm0,00$	$0,00\pm0,00$

Во II, III и IV группах исследования ширина пострезекционных дефектов достоверно уменьшилась по сравнению с первоначальными значениями (табл. 1) (p<0,05). Границы костных дефектов в перечисленных опытных группах имели неровные и нечеткие контуры, что указывало на происходившие процессы репарации.

Рентгенологический анализ репаративной регенерации костной ткани позволил установить, что в контрольной и I группах исследования плотность костной ткани составила 231,63±19,81 HU и 278,54±28,62 HU соответственно. Полученные значения более чем в 2 раза ниже значений коэффициента абсорбции, выявленных в группах, где сформированные дефекты костной ткани заполнялись коллагеновыми мембранами со взвесью культур аллогенных МСК ЖТ (табл. 2) (p<0,01).

Таблица 2. Динамика изменения минеральной плотности костной ткани по данным КЛКТ, в условных единицах Хаунсфилда (HU)

Груни и неследовомия	Срок наблюдения			
Группы исследования	14 суток	1 месяц	2 месяца	
Контрольная группа	231,63±19,81	401,63±21,01	512,13±55,66	
I группа	278,54±28,62	512,54±48,22	680,54±42,89	
II группа	575,76±43,12	655,92±21,19	761,89±37,75	
III группа	594,54±34,41	727,41±11,84	847,32±24,01	
IV группа	561,71±39,30	712,42±45,78	859,73±16,12	

Таким образом, процессы костной репарации, наблюдаемые на 14 сутки после оперативного вмешательства, в группах исследования, в которых замещение сформированных дефектов выполнялось с использованием МСК ЖТ, были значимо более выражены, чем в контрольной и I опытной группах. В то время как внутри указанных групп, не зависимо от типов применяемых стволовых клеток, статистически достоверных отличий не установлено (p>0.05).

Рентгенологическая картина остеорепарации через 1 месяц после оперативного вмешательства. Анализ компьютерных томограмм, полученных через 1 месяц после оперативного вмешательства, позволил выявить неровность и нечеткость границ сформированных костных дефектов у образцов в группе исследования с использованием мембран на основе костного коллагена, что свидетельствовало об активизации процессов репарации в указанной опытной группе. Показатели ширины дефектов в І группе исследования значительно сократились по сравнению с первоначальными и были достоверно меньше, размеров, полученных в контрольной группе (табл. 1) (p<0,05).

Процессы репаративной регенерации, наблюдаемые в II, III и IV группах проходили достоверно более активно, чем в контрольной и I группах, на что указывало значительное сокращение размеров сформированных костных дефектов и наличие признаков остеорепарации непосредственно в зоне резекции (табл. 1) (p<0,01).

Плотностные характеристики костной ткани в контрольной и I опытной группах составляли $401,63\pm21,01$ HU и $512,54\pm48,22$ HU соответственно. В группах исследования,

в которых сформированные дефекты костной ткани заполнялись коллагеновыми мембранами со взвесью культур мезенхимальных стволовых клеток жировой ткани, плотностные показатели вновь сформированной костной ткани были значимо выше, чем в контрольной и I опытных группах (табл. 2) (p<0,01). Следует отметить, что коэффициенты абсорбции, наблюдаемые в III и IV группах исследования, были статистически достоверно выше, чем во II опытной группе (табл. 2) (p<0,05).

Таким образом, процессы костной репарации, наблюдаемые через 1 месяц после вмешательства, в группах исследования, в которых сформированных дефектов выполнялось с использованием МСК ЖТ, были значимо более выражены, чем в контрольной и І опытных группах. При этом плотностные характеристики вновь образованной костной ткани в группах, в которых применялись остеоиндуцированные МСК ЖТ, а также смесь культур МСК ЖТ и остеоиндуцированных MCK ЖТ, были значимо выше, чем в группе, в которой применялись недифференцированные МСК ЖТ.

Рентгенологическая картина остеорепарации через 2 месяца после оперативного вмешательства. Через 2 месяца после оперативного вмешательства в контрольной группе наблюдалось сокращение размеров пострезекционных костных дефектов по сравнению с первоначальными, наличие признаков перестройки костной ткани в зоне резекции (табл. 1) (p<0,05). Однако выявленные изменения были значимо менее выражены, чем во всех опытных группах (p<0,01).

В группе исследования, в которой послеоперационный дефект заполнялся мембранами на основе костного коллагена, значения ширины дефектов костной ткани уменьшились в 2 раза по сравнению с первоначальными (p<0,05). Однако скорость перестройки костной ткани была статистически достоверно менее выражена, чем в группах исследования, в которых помимо коллагеновых мембран применялись МСК ЖТ (табл. 1) (p<0,01). В опытных группах, в которых применялись остеоиндуцированные МСК ЖТ, а также смесь культур МСК ЖТ и остеоиндуцированных МСК ЖТ через 2 месяца после оперативного вмешательства наблюдалось полное закрытие пострезекционных дефектов.

Минеральная плотность костной ткани в контрольной группе составила $512,13\pm55,66$ HU, в I опытной группе $680,54\pm42,89$ HU, что значимо ниже значений показателей остеорепарации, наблюдаемых в группах, где сформированные дефекты костной ткани заполнялись коллагеновыми мембранами со взвесью культур аллогенных МСК ЖТ (табл. 2) (p<0,01).

Значения коэффициентов абсорбции, наблюдаемые в III и IV группах исследования были достоверно выше, чем во II группе (табл. 2) (p<0,05). Однако статистически значимых отличий между показателями минеральной плотности вновь сформированной в области пострезекционного дефекта костной ткани в III и IV опытных группах не установлено (p>0,05), что обосновывает необходимость последующего проведения морфологического исследования с целью анализа более тонких структур.

Таким образом, признаки остеорепарации пострезекционного дефекта и показатели минеральной плотности костной ткани в группах, в которых применялись остеоиндуцированные МСК ЖТ, а также смесь культур МСК ЖТ и остеоиндуцированных МСК ЖТ, были наиболее выраженными. При этом в данных группах наблюдалось полное восстановление костной ткани, а коэффициент абсорбции в области вновь образованной костной ткани соответствовал значениям этого показателя для интактной костной ткани данной анатомической области.

Выводы. В результате проведенного экспериментального исследования на модели периодонтального дефекта у кролика, рентгенологического контроля полноты восстановления костной ткани и анализа ее минеральной плотности было установлено, что применение коллагеновых мембран со взвесью культур аллогенных остеоиндуцированных мезенхимальных стволовых клеток жировой ткани, а также

мембран со взвесью смеси культур аллогенных мезенхимальных стволовых клеток жировой ткани и аллогенных остеоиндуцированных мезенхимальных стволовых клеток жировой ткани в пропорции 1:1, является наиболее эффективным методом остеорепарации.

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Белгородский государственный национальный исследовательский университет» Министерство здравоохранения Белгородской области Стоматологическая ассоциация России БРОО «Стоматологическая ассоциация»

СТОМАТОЛОГИЯ СЛАВЯНСКИХ ГОСУДАРСТВ

Сборник трудов XV Международной научно-практической конференции, посвященной 30-летию компании «ВладМиВа»

Белгород 2022