Рубникович С.П. 1 , Кузьменко Е.В. 2 , Грищенков А.С. 2

БИОЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ ЖЕВАТЕЛЬНЫХ И ВИСОЧНЫХ МЫШЦ В ПОКОЕ И ПРИ ПРОИЗВОЛЬНОМ НАПРЯЖЕНИИ У ПАЦИЕНТОВ С КЛИНИЧЕСКИМИ ПРИЗНАКАМИ БРУКСИЗМА НА ЭТАПЕ ПЕРВИЧНОЙ ДИАГНОСТИКИ

¹ Белорусский государственный медицинский университет, г. Минск, Республика Беларусь ² Белорусская медицинская академия последипломного образования, г. Минск, Республика Беларусь

Актуальность проблемы. Современное понимание механизмов бруксизма и связанных с ним процессов гипервозбудимости центров мозга формируется в литературе на протяжении последних нескольких лет. Специалисты пришли к согласию в том, что бруксизм — это не только явление, обычно связываемое со стискиванием и разрушением зубов. По некоторым оценкам, он встречается у 8—31% населения. Выделяют бруксизм бодрствования и бруксизм сна. Бруксизм бодрствования — это чрезмерная активность жевательных мышц, возникающая в период бодрствования, которая характеризуется длительным или повторяющимся контактом между зубами и/и может рассматриваться как расстройство движения у здоровых людей. Бруксизм сна определяют, как ритмическую или тоническую активность жевательных мышц во время сна, приводящую к повреждению эмали зубов.

В настоящее время актуальным представляется изучить вклад мозговых структур в регуляцию многих функций организма с применением неинвазивных и недорогостоящих электрофизиологических методов их анализа, что подчеркивает второй аспект актуальности заявляемой темы научно-исследовательской работы.

Цель исследования — оценить биоэлектрическую активность жевательных и височных мышц в покое и при произвольном напряжении у пациентов с клиническими признаками бруксизма на этапе первичной диагностики.

Материал и методы исследования. Сформированы 2 группы исследования – основная и контрольная. В основную группу исследования включены 3 пациента с клиническими признаками бруксизма, обратившихся за стоматологической помощью. В контрольную группу включены 3 пациента, обратившихся за стоматологической помощью и не имевших клинических признаков бруксизма.

На базе кафедры физиологии человека и животных биологического факультета университета проведено Белорусского государственного электромиографическое исследование пациентам основной И контрольной групп. Для регистрации произвольного напряжения использовали компьютерную электромиограммы многофункциональную установку «НейроМВП-4» производства кампании «Нейрософт» регистрировалась билатерально. (Россия). Активность мышц Методом интерференционной ЭМГ билатерально регистрировали электрическую активность собственно жевательных и височных мышц (m. masseter и m. temporalis). Биполярные поверхностные электроды располагали в проекции «брюшка» мышцы, межэлектродное расстояние выдерживали 2-2,5 см. Заземляющий электрод располагали на запястье. Алгоритм исследования включал следующие условия регистрации: 1) запись ЭМГ «покоя», 2) запись ЭМГ «покоя во время совершения вдоха, 3) запись ЭМГ всех мышц в условиях произвольного максимального напряжения, 4) запись ЭМГ мышц при произвольном напряжении в сочетании с совершением вдоха (рисунок 1).

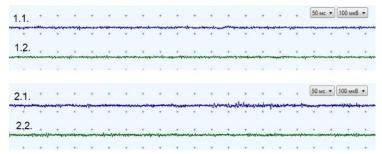


Рисунок 1 — Пример записи электромиограммы m. masseter. 1 — «покой», 1.1. — справа, 1.2. — слева; 2 — «покой + вдох», 2.1. — справа, 2.2. — слева

Анализировали амплитуду (мкВ) и частоту (имп\с) осцилляций интерференционной ЭМГ. Проведен анализ данных электромиографического исследования с их отражением в протоколах обследования (таблица 1, рисунок 2). В таблице регистрировали цифровые значения для каждой правой и левой собственно жевательной и височной мышцы, визуализацию миограмм, а также тезисы заключения для исследования.

Полученные данные обрабатывали статистически с помощью программ Statistica и Excel. Тип распределения количественных признаков определяли с использованием критерия Шапиро-Уилка. Для описания количественных признаков, имеющих нормальное распределение, указывали среднее значение и среднее квадратичное отклонение. При описании количественных признаков, распределение которых отличалось от нормального, указывали медиану (Me), нижний 25-й (LQ) и верхний 75-й квартили (UQ). При сравнении групп использовали критерий Манна-Уитни. Корреляционный анализ количественных и качественных признаков проводили с использованием критерия гамма-корреляции. Значение коэффициента корреляции $r \ge 0.75$ указывало на сильную корреляцию, r = 0.26-0.74 — на корреляцию средней силы, $r \le 0.25$ — на слабую корреляцию. Результаты признавались статистически значимыми при p < 0.05.

Таблица 1 – Протокол электромиографического исследования и турно-амплитудного анализа

Пациент: Ш.И.А., 54 года						
Дата проведения исследования: 04.05.2022 года						
Интерференционная ЭМГ						
Ік. пр., m. Temporalis						
2к. лев., m. Temporalis						
Зк. пр., m. Masseter						
4к лев m. Masseter						

Турно-амплитудный анализ							
Кривая	Максимальная амплитуда, мкВ	Средняя. амплитуда, мкВ	Суммарная амплитуда, мВ/с	Средняя частота, 1/с	Амплитуда/ частота, кВ×с	Комментарий к кривой	
8,1 к.	37,4	0	0	0		покой	
8,2 к.	18,4	0	0	0			
8,3 к.	31,2	0	0	0			
8,4 к.	45,7	0	0	0			
5,1 к.	1446	352	128	364	0,966	окклюзия	
5,2 к.	1625	407	152	375	1,09		
5,3 к.	1136	294	82,2	280	1,05		
5,4 к.	1407	316	106	336	0,941		
6,1 к.	1141	321	55,9	174	1,85	ритмические сокращения	
6,2 к.	1289	340	57,4	169	2,01		
6,3 к.	912	248	26,0	105	2,37		
6,4 к.	832	244	31,6	130	1,88		

Результаты исследования

В результате проведенного анализа электромиограмм установлено превышение значений средней амплитуды на 38,9–82,1% для правой и левой собственно жевательных мышц при произвольном напряжении у пациентов с клиническими признаками бруксизма в сравнении с пациентами контрольной группы. Превышение значений максимальной амплитуды при этом составило 76,4–175,5%.

Установлено превышение значений средней амплитуды на 90,9–125,2% для правой и левой височных мышц при произвольном напряжении у пациентов с клиническими признаками бруксизма в сравнении с пациентами контрольной группы. Превышение значений максимальной амплитуды при этом составило 265,5–399,4%.

Анализ показателей средней амплитуды покоя для собственно жевательных и височных мышц у пациентов с признаками бруксизма в сравнении с пациентами контрольной группы позволил установить увеличение значений для собственно жевательных мышц на 53–56%, для височных — на 71–76%. Изучение максимальной амплитуды в покое для собственно жевательных и височных мышц не является характерным признаком для верификации нарушений мышечного аппарата, что согласуется с научными данными, представленными в актуальных литературных источниках.

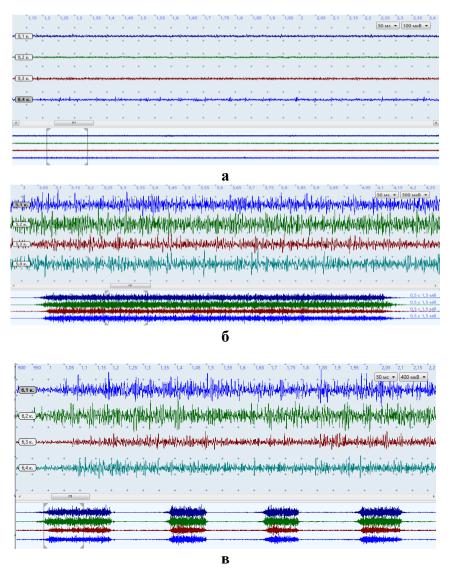


Рисунок 2 — Электромиограмма собственно жевательных мышц: а — в покое, б — в состоянии окклюзии, в — при ритмических сокращениях

Выводы. Полученные данные указывают на стойкое расстройство мышц челюстно-лицевой области, которое характеризуется выраженным отклонением значений средней и максимальной амплитуд в покое и при произвольном напряжении, а также асимметрией амплитудно-частотных характеристик. Данные нарушения отрицательно влияют на работу жевательно-речевого аппарата, осложняя парафункциональную активность жевательных мышц расстройствами височно-нижнечелюстного сустава, заболеваниями периодонта, а также приводя к нарушению целостности зубного ряда, и его деформациям.

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Белгородский государственный национальный исследовательский университет» Министерство здравоохранения Белгородской области Стоматологическая ассоциация России БРОО «Стоматологическая ассоциация»

СТОМАТОЛОГИЯ СЛАВЯНСКИХ ГОСУДАРСТВ

Сборник трудов XV Международной научно-практической конференции, посвященной 30-летию компании «ВладМиВа»

Белгород 2022