## Сташкевич А.Р., Борунов А.С., Титов П.Л. МЕТОДЫ РЕСТАВРАЦИИ КУЛЬТИ ПРИ ОБШИРНЫХ И ПОЛНЫХ ДЕФЕКТАХ КОРОНКИ ЗУБА

Белорусский государственный медицинский университет, г. Минск

Здоровье полости рта несомненно важный и социально значимый показатель. Самым распространенным поражением зубочелюстной системы является поражение твердых тканей зуба различной этиологии, что в свою очередь приводит к затруднению жевания, ухудшения эстетических характеристик челюстно-лицевой области и психологического статуса пациента.

Обширный или тотальный дефект коронки зуба, и связанная с этим утрата механической прочности, обуславливают необходимость использования восстановительной штифтовой конструкции.

Рассмотрим наиболее актуальные конструкции.

Анкерные штифты представляют собой стержень из металла, он устанавливается в канал зуба, создавая каркае для предполагаемой работы, конструкция штифта неоднородна: головка, плечо и хвостик. Это создает объёмность, что создает прочность и надежную опору протеза. Анкерные штифты различаются по типу фиксации в канале (активные и пассивные), форме, составе сплавов, применяемых при их изготовлении (нержавеющая сталь, титан, палладий и серебро, золото и платина, латунь). Плюсами данной конструкции является: скорость (в один прием возможна и установка штифта и подготовка под окончательную реставрацию), низкая стоимость в сравнении с индивидуализированными штифтами. К основным недостаткам стоит отнести высокую вероятность вторичного кариеса, возможное появление аллергии на сплав, из которого изготовлен штифт, высокую вероятность отлома реставрации либо перелома корня ввиду повышенного напряжения в зоне установки штифта.

Стекловолоконный штифт представляет собой стержень, сделанный ИЗ высококачественного стекловолокна. Просвет между штифтом и стенками корневого канала заполняется композитом с использованием адгезивного протокола. Для наиболее точного позиционирования в корневом канале применяют специализированные наборы разверток, соответствующие форме и размеру штифта. После установки в корневой канал он создает каркас для культи зуба. Материал нашел свое применение во многих областях медицины за счет своей абсолютной гипоаллергенности, высокой эластичности и светопроницаемости. К плюсам данной конструкции относятся: биологическая и химическая инертность, гипоаллергенность, модуль упругости схож с модулем упругости дентина (что минимизирует вероятность перелома корня). Стекловолоконные штифты достигнуть хорошего эстетического результата при конструкциями с высокой светопроницаемостью за счет своей прозрачности, скорости установки (проводится в одно посещение). Основными минусами данной конструкции являются: невозможность установки при разрушении зуба ниже уровня десны (из-за отсутствия возможности применения адгезивного протокола), затруднительной является установка штифтов в каналы с широким устьем и поднутрениями, т.к. просвет между штифтом и стенками корня заполняется композитным цементом. Данный материал при большом объеме обладает высокой полимеризационной усадкой, что в свою очередь может вызвать разрыв связи между композитом и тканями зуба.

Индивидуализированный стекловолоконный штифт, который может быть выполнен как непосредственно в клинике, так и в зуботехнической лаборатории. Данная штифтовая конструкция является сборной и представляет собой стекловолоконный штифт, который при помощи гибридного композитного материала индивидуализирован под конкретный корневой канал. Далее конструкция устанавливается с соблюдением адгезивного протокола. Данная конструкция обладает рядом преимуществ: биологическая и химическая инертность, гипоалергенность, модуль упругости схож с модулем упругости дентина (что минимизирует вероятность перелома корня). Индивидуализированные стекловолоконные штифты позволяют достигнуть хорошего эстетического результата при протезировании конструкциями с высокой светопроницаемостью за счет своей прозрачности. При прямом методе изготовления штифт устанавливается в одно посещение, возможна установка в корневой канал с широким устьем, за счет уменьшения объёма фиксирующего материала, что снижает полимеризационную усадку данной конструкции и способствует более равномерному распределению напряжений, как в самой вкладке, так и в восстанавливаемом зубе. К минусам можно отнести достаточно большое количество клинических этапов, которое увеличивает риск врачебной ошибки.

Широко распространены в клинике ортопедической стоматологии культевые штифтовые конструкции.

Культевая штифтовая конструкция — микропротез для создания условий надежного соединения искусственной восстановительной (опорно-восстановительной) коронки, либо другой покрывной конструкции, с сохранившимся корнем зуба.

Металлическая культевая штифтовая вкладка изготавливается путем литья, компьютерного фрезерования и 3D печати. Существует два вида металлических культевых штифтовых вкладок: разборные и неразборные. Разборные вкладки состоят из двух частей и служат для установки в многокорневые зубы с непараллельными корнями, неразборные представляют собой монолитную конструкцию и могут устанавливаются как в однокорневые зубы, так и в многокорневые (при условии параллельности корневых каналов). Основные плюсы данной конструкции: прочность, долговечность, возможность работы с корнями в поддесневой области. Недостатки конструкции: модуль упругости металлической вкладки выше чем у дентина, что увеличивает риск перелома корня, невозможность применения с конструкциями, обладающими высокой светопроницаемостью, возможное развитие аллергии на сплав, необходимость минимум двух посещений для изготовления и установки данной конструкции.

Культевая штифтовая вкладка из диоксида циркония представляет собой монолитную конструкцию. Она может быть как однокорневая, так и многокорневая, изготавливается методом компьютерного фрезерования. Обладает следующими достоинствами: биоинертна и гипоалергенна, обладает высокой прочностью, улучшает эстетические характеристики реставраций с высокой светопроницаемостью за счет возможности выбора цвета материала для изготовления вкладки. Основные минусы: модуль упругости выше металлической вкладки, что резко повышает риск перелома корня зуба, необходимость нескольких посещений для установки.

Культевые штифтовые вкладки, изготовленные из материалов группы ПЕЕК (polyetheretherketon-полиэтерэтеркетон). В настоящее время данный материал так же широко применяется в стоматологии при изготовлении абаттментов, каркасов

мостовидных протезов, одиночных коронок, телескопических коронок. Конструкции из БиоХПП изготавливаются либо посредством CAD/CAM, либо методом литьевого прессования.

Культевая штифтовая вкладка из РЕЕК представляет собой монолитную конструкцию, вкладка может быть однокорневой либо многокорневой. К основным плюсам будет относиться: биосовместимость, модуль упругости схож с модулем упругости дентина, хорошие эстетические характеристики при последующем восстановлении коронковой части зуба светопроницаемыми конструкциями. К недостаткам стоит отнести: относительно высокую стоимость, необходимость минимум двух посещений для изготовления и установки.

Исходя из вышесказанного, можно сделать вывод о многообразии вариантов восстановления культи зуба. Однако все существующие методы имеют ряд недостатков, что в свою очередь создает благоприятную почву для развития и внедрения новых методов восстановления и укрепления наддесневой части зуба перед проведением рационального протезирования.

## Министерство образования и науки Российской Федерации Министерство здравоохранения Белгородской области ФГАОУ ВО «Белгородский государственный национальный исследовательский университет»

Стоматологическая Ассоциация России Белгородская региональная общественная организация «Стоматологическая ассоциация»

## СТОМАТОЛОГИЯ СЛАВЯНСКИХ ГОСУДАРСТВ

Сборник трудов

XVI Международной научно-практической конференции, приуроченной к 75-летию Заслуженного врача Российской Федерации, доктора медицинских наук, профессора А.В. Цимбалистова



Белгород 2023