УДК [61+615.1] (043.2) ББК 5+52.81 А 43 ISBN 978-985-21-1864-4

## Mulik A.

## GENOMICS: LATEST TECHNOLOGIES AND ADVANCEMENT

Tutor: senior lecture Grigorovich V.V.

Department of Biology Belarusian State Medical University, Minsk

This study delves into the pivotal position of genomics in transforming ongoing health care, with the advances highlighting both augmentation of diagnostic capabilities as well as therapeutic interventions. Genomics, or the comprehensive characterization of an organism's total DNA complement, has fundamentally transformed our understanding of biological systems, mechanisms of disease, and the intricate interaction between environment and genetics.

The study explores various fields of genomics, including structural genomics, which involves the mapping and sequencing of DNA to determine genomic structure; functional genomics, which studies gene function and regulation by interaction with the environment and other genes; comparative genomics, which observes the comparison of evolutionary relationships and functional homologies among various species; and medical genomics, which converts genomic information to disease diagnosis and treatment. These branches collectively encourage the precision of medical procedures and our ability to cure complex diseases.

The technologies that enable this revolution are also examined in detail. For instance, CRISPR is a gene-editing technology that has developed into a revolutionary tool for creating precise changes in DNA sequences. This has been used to successfully treat diseases caused by mutations such as sickle cell anemia, demonstrating its ability to provide targeted therapies that address the genetic cause of disease.

In addition, single-cell RNA sequencing (scRNA-seq) is highlighted due to its capacity to demystify cellular heterogeneity in tissues, such as in cancer of the breast, in which cancer diversity significantly impacts the success of therapy. Through the characterization of distinct cell populations, researchers can differentiate subpopulations responsible for disease initiation or drug resistance, giving prospects for more specific, personalized therapies. The use of RNA interference (RNAi) is also investigated as a technique for silencing the genes related to deleterious protein production. It is especially applicable in the case of neurodegenerative disorders such as Huntington's disease in which RNAi therapy can be used to target the destruction of the mutant mRNA that leads to the toxic protein production, making it an exciting area for treatment. Furthermore, whole exome sequencing (WES) is talked about as a vital diagnostic tool for the detection of rare genetic disorders. By targeting protein-coding parts of the genome, WES enables the identification of common and rare variants, thus enabling clinicians to diagnose conditions such as cystic fibrosis effectively. The article outlines the procedure of WES, from library preparation to data analysis, noting its importance in modern genetic diagnostics.

In summary, this research paper discusses how genomics is revolutionizing our understanding of biology and medicine in profound and intricate ways. Through the exploration of genomic complexity, we are able to grasp the vast complexity of life at the cellular level, illustrating the cooperative functions of different cell types. Techniques like CRISPR, single-cell genomics, RNA interference, and whole exome sequencing not only augment research but also bring in a new era of personalized healthcare approaches, ultimately improving patient outcomes and transforming treatment paradigms in contemporary medicine.