Повреждение белого вещества головного мозга и нейроразвитие в возрасте 2 лет у недоношенных детей

¹И. В. Жевнеронок, ²В. Б. Смычек,

¹Л. В. Шалькевич, ³О. В. Шалькевич

¹Белорусский государственный медицинский университет, Минск, Беларусь ²Республиканский научно-практический центр медицинской экспертизы и реабилитации, Минск, Беларусь ³Республиканский научно-практический центр «Мать и дитя», Минск, Беларусь

Цель. Оценить частоту перивентрикулярной лейкомаляции (ПВЛ) у недоношенных детей с разным сроком гестации и сопоставить с исходами развития в раннем возрасте.

Материал и методы. Выполнено ретроспективно-проспективное исследование с участием 212 недоношенных детей, рожденных на сроке от 26 до 37 нед. гестации. В зависимости от гестации сформированы четыре группы: 1-я группа — до 28 нед. (n = 36); 2-я группа — 28—31 нед. (n = 51); 3-я группа — 32—33 нед. (n = 55); 4-я группа — 34—36 нед. (n = 70). Сопоставлены показатели ПВЛ, длительной перивентрикулярной гиперэхогенности (ПВГЭ) в неонатальном периоде с исходами нейроразвития.

Результаты. ПВЛ достоверно чаще встречалась в 1-й группе — 18 (50,0 %) случаев, что в 1,5 раза выше по сравнению со 2-й и 3-й группами, в которых аналогичные показатели имели примерно одинаковые значения (33,3 % и 34,5 % соответственно; р Φ ишера < 0,001). У новорожденных 4-й группы кистозная ПВЛ отмечена в 5 (7,1 %) случаях, что подчеркивает необходимость учитывать риски развития ПВЛ при рождении не только у детей до 28 нед., но и при сроках поздней недоношенности. Наличие длительной ПВГЭ в неонатальном периоде в 2,41 раза (RR = 2,41, 95 % ДИ (1,83;3,19)); р $_{\text{кохрейна} — Мантель — Ханцеля}$ < 0,001) повышает риски нарушений в нейроразвитии в раннем возрасте по сравнению со случаями без ПВГЭ.

Заключение. Признаки повреждения белого вещества по результатам нейросонографии в неонатальном периоде выявлены почти у каждого третьего недоношенного (27,8 %). Повреждение белого вещества влияет на исходы нейроразвития, что обосновывает раннюю медицинскую абилитацию, направленную на снижение случаев нарушений в развитии.

Ключевые слова: перивентрикулярная лейкомаляция, белое вещество мозга, недоношенные, развитие, ранний возраст.

Objective. To evaluate the patterns of periventricular leukomalacia (PVL) in premature infants with different gestational ages and compare with developmental outcomes in early childhood.

Materials and methods. A retrospective-prospective study included 212 premature babies born between 26 and 37 weeks of gestation. Four groups were formed depending on the gestational age at birth: up to 28 weeks (n = 36); 28—31 weeks (n = 51); 32—33 weeks (n = 55); 34—36 weeks (n = 70). The indices of PVL and long-term periventricular hyperechogenicity (PVHE) in the neonatal period were compared with the outcomes of neurodevelopment.

Results. PVL was significantly more common in prematurity up to 28 weeks — in 50.0 % (18 cases), which is 1.5 times higher compared to the groups of 28-31 weeks and 32-33 weeks, in which similar indicators had approximately the same values (33.3 % and 34.5 %; Fisher's p < 0.001). cPVL was noted in 7.1 % (5 cases) in newborns with late prematurity (34-36 weeks), which emphasizes the need to consider the risks of developing PVL at birth not only in children under 28 weeks, but also in terms close to full-term. The presence of prolonged PVGE in the neonatal period increases the risk of neurodevelopmental disorders in early life by 2.41 times (RR = 2.41, 95 % CI (1.83;3.19)); Cochrane — Mantel — Haenszel's p < 0.001) compared to cases without PVHE.

<u>Клиническая медицина</u>

Conclusion. Signs of white matter damage based on neurosonography in the neonatal period were detected in almost every third premature infant (27.8 %). White matter damage affects neurodevelopmental outcomes, which justifies early medical habilitation aimed at reducing the incidence of developmental disorders.

Key words: periventricular leukomalacia, white matter, prematurity, development, early childhood.

HEALTHCARE. 2025; 2: 16-23

WHITE MATTER DAMAGE AND NEURODEVELOPMENT IN PREMATURE INFANTS AGED 2 YEARS

I. Zhauniaronak, V. Smychek, L. Shalkevich, O. Shalkevich

Недоношенность вызывает серьезную озабоченность в политике здравоохранения в странах как с низким, так и с высоким уровнем дохода [1]. Термин «недоношенность» по отношению к детям применяется во всех случаях рождения с гестацией менее 37 нед., затрагивает 9—11 % случаев всех новорожденных во всем мире, являясь второй по частоте причиной смерти детей в возрасте до 5 лет [2]. Среди недоношенных детей порядка 16 % рождаются очень недоношенными (срок при рождении — менее 32 нед.), это дети с самым высоким риском неонатальных заболеваний и долгосрочных нарушений нейроразвития, включая стойкие двигательные нарушения, такие как церебральный паралич, нарушения речевого и нейропсихологического развития, расстройства поведения [2]. По данным Организации Объединенных Наций, в период с 2010 по 2020 г. в мире родились недоношенными 152 млн детей, при этом в 2020 г. — 13,4 млн, из них около 1 млн умерли вследствие осложнений [3].

Одной из частых форм поражения головного мозга при недоношенности является перивентрикулярная лейкомаляция (ПВЛ), которая в качестве основных факторов имеет многофакторный патогенез, включающий гипоксически-ишемический генез и поражения вследствие внутриутробных инфекций [4; 5]. Основной клеточной мишенью в развитии ПВЛ является олигодендроглиальная клетка-предшественник, из которой должна формироваться олигодендроглия, также итогом повреждения олигодендроглиальной клетки-предшественника является хроническое нарушение процессов миелинизации [6; 7]. ПВЛ и внутрижелудочковые кровоизлияния (ВЖК) тесно связаны между собой; фактором, повышающим формирование ПВЛ, является ВЖК, при котором локально изменяются ткани за счет увеличения концентрации железа в поврежденных кровоизлиянием участках мозга [6].

На сегодняшний день для диагностики ПВЛ наиболее часто используют нейросонографический метод нейровизуализации (НСГ). Точность данного метода в диагностике кистозной ПВЛ высокая — диагностируется в 86—89 % случаев [8]. Формирование кистозной ПВЛ проходит через несколько стадий, которые условно выделяют во времени с возможностью их верификации при проведении НСГ. В первые недели отмечается значительное повышение эхогенности в перивентрикулярных зонах, кисты не визуализируются, этот период относят к ранней (докистозной) стадии ПВЛ [9]. С момента появления мелких кист в перивентрикулярных областях, которые заметны преимущественно после 20-го дня, начинается стадия кистозной дегенерации, при этом визуальное количество кист может увеличиваться в течение короткого времени [8; 9]. В последующем мелкие

перивентрикулярные кисты могут спадаться, в ряде случаев сливаться с желудочковой системой и перестают определяться по НСГ и при обычной магнитно-резонансной томографии (МРТ), представляя собой позднюю (нейросонографически бессимптомную) стадию ПВЛ. В основе нейросонографической картины и перечисленных этапов лежит динамический процесс ПВЛ с формированием мелких очагов некроза, резорбции поврежденных участков и формирования очага глиоза или кисты.

Выделяют три нейропатологических варианта ПВЛ: кистозный — с макроскопическим фокальным некрозом и трансформирующимся в течение нескольких недель в кисты (более 1 мм); некистозный — с мелкими очагами некроза (менее 1 мм) с последующей трансформацией в глиальные очаги; диффузное повреждение белого вещества в виде астроглиоза без очагового некроза и нейронально-аксональное повреждение, которые относят к некистозным формам повреждения белого вещества мозга [10].

По результатам МРТ головного мозга к основным показателям, которые характеризуют диффузные аномалии белого вещества, относят: отсутствие кистозных изменений в белом веществе (или размер кист не должен превышать 1 мм); изменение сигнала от белого вещества, задней ножки внутренней капсулы или радиальной лучистости с задержкой миелинизации; истончение мозолистого тела; расширение боковых желудочков и/или потеря белого вещества; также может наблюдаться двустороннее и симметричное уменьшение объема мозжечка за счет двусторонней перекрестной транссинаптической дегенерации [7].

Среди вариантов повреждения белого вещества головного мозга у недоношенных детей лидируют некистозные поражения (79 %) [11—13]. Клинические симптомы и неврологические нарушения при ПВЛ в период новорожденности полиморфны и неспецифичны, в последующем клиническая картина ПВЛ напрямую зависит от распространенности кистозной дегенерации, зоны поражения белого вещества.

Перивентрикулярная лейкомаляция долгое время считалась нейропатологическим субстратом только двигательных нарушений в виде детского церебрального паралича у выживших недоношенных детей. Развитие когнитивных нарушений у этих детей считалось не столь значимым, поскольку олигодендроциты не определяют когнитивный дефицит, однако согласно данным работы C. R. Pierson и соавт. при исследовании глубоко недоношенных новорожденных (с весом при рождении менее 1500 г) у 20-50 % в последующем были нарушения познавательных функций и обучения, тогда как детский церебральный паралич встречался только у 10 % из них [14]. Результаты работ по изучению роли МРТ головного мозга недоношенных детей в определении вероятности возникновения последующего когнитивного дефицита не однозначны [15]. Учитывая, что субвентрикулярная зона содержит самый большой пул делящихся нейрональных предшественников или стволовых клеток в головном мозге [5; 6; 10; 11], предполагаем, что даже минимальное повреждение перивентрикулярной зоны в неонатальном периоде у недоношенных детей необходимо рассматривать не только как значимый фактор в прогнозе первого года жизни, но и как фактор риска отсроченных отдаленных последствий, клинически проявляющих себя на более позднем этапе нейроразвития (в 2—3 года).

Цель исследования — оценить частоту ПВЛ у недоношенных детей с разным сроком гестации и сопоставить с исходами развития в раннем возрасте.

Исследование выполнено на клинической базе кафедры детской неврологии в ГУ «Республиканский научно-практический центр «Мать и дитя» (с проведением исследо-

вания в педиатрическом отделении для недоношенных новорожденных, педиатрическом отделении для детей раннего возраста с перинатальным поражением нервной системы, с врожденной и наследственной патологией, педиатрическом отделении для новорожденных детей с перинатальным поражением нервной системы, с врожденной и наследственной патологией), в УЗ «Минский городской центр медицинский реабилитации детей с психоневрологическими заболеваниями», а также в Республиканском центре детской неврологии, действующем на функциональной основе.

Материал и методы

Выполнено ретроспективно-проспективное исследование. В исследование взято 238 недоношенных детей, рожденных на сроке от 26 до 37 нед. гестации. При посещении каждые 3 мес. оценивали моторное развитие, постуральный тонус и неврологические функции детей, такие как рефлексы, мышечный тонус, устанавливали наличие неврологических нарушений. Возраст 2 года определен конечной точкой исследования, в которой выполнены количественный и качественный анализы неврологических нарушений. Также в возрасте 2 лет проводили оценку речевого развития даже при отсутствии отклонений от нормы в двигательном развитии. Критерий включения в исследование — срок гестации при рождении от 22 до 37 нед. Критерии исключения: врожденные пороки развития головного мозга или нервной системы, наследственные нервно-мышечные заболевания и наследственные болезни обмена веществ. При выявлении и подтверждении указанных диагнозов детей исключали из исследования вне зависимости от длительности их наблюдения и достижения финальной точки исследования. В нашем случае произошло исключение 26 (10,9 %) пациентов, в том числе по причине несоответствия дизайна исследования, отсутствия контрольных визитов на осмотр. Таким образом, в исследование включено 212 недоношенных новорожденных, данные были статистически обработаны. Сформированы четыре группы в зависимости от срока гестации при рождении: 1-я группа — до 28 нед. (n = 36); 2-я группа — 28—31 нед. (n = 51); 3-я группа — 32—33 нед. (n = 55); 4-я группа — 34—36 нед. (n = 70).

Статистическая обработка результатов исследования проведена с использованием системы R, которая была разработана на статистическом факультете Оклендского университета, доступна под лицензией GNU GPL и распространяется в виде исходных кодов и приложений.

Статистической обработке подвергли количественные и качественные показатели. Качественные параметры были представлены в виде частотных распределений с указанием удельного веса категории параметра и/или в виде абсолютного количества наблюдений. Количественные показатели при сравнении значений в двух группах, имеющих Гауссово распределение, оценивали с помощью двустороннего теста Стьюдента. При сравнении количественных показателей в трех группах и более использовали дисперсионный анализ. Для сравнения качественных данных, которые можно представить в виде таблиц сопряженности 2×2, применяли двусторонний точный тест Фишера. Для сравнения качественных стратифицированных данных, которые можно представить в виде множества таблиц сопряженности 2×2, применяли тест Кохрейна — Мантеля — Ханцеля. При сравнении

значений количественных признаков, не имеющих нормального распределения, в двух группах использовали двусторонний тест Уилкоксона — Манна — Уитни с поправкой на непрерывность. При этом учитывали наличие или отсутствие повторяющихся значений. Для сравнения трех групп и более использовали тест Краскела — Уоллиса с последующим post hoc анализом. При принятии решения о равенстве групп (при отсутствии различий) в качестве порогового значения определяли p = 0.05. Различия считали статистически значимыми при p < 0.05.

Результаты и обсуждение

Проведена оценка частоты кистозной ПВЛ (кПВЛ) в неонатальном периоде у недоношенных новорожденных по результатам выполненной нейросонографии (табл. 1).

Среди всех 212 недоношенных детей ПВЛ по результатам УЗИ головного мозга в неонатальном периоде выявлена почти у каждого третьего (27,8 %). Данный факт необходимо учитывать, поскольку повреждение белого вещества носит стойкий характер, с клиническими проявлениями нарушений в развитии спустя месяцы, отсрочено, что обосновывает разработку превентивных методов лечения и медицинской абилитации, направленных на снижение случаев формирования ПВЛ. При динамическом НСГ-исследовании в возрасте 4—5 мес. у детей с ПВЛ в неонатальном периоде в 32,2 % (19/59) нейросонографических симптомов кистозной ПВЛ уже не было, но в этих случаях отмечались неспецифические изменения в виде минимального расширения боковых желудочков, что указывает на возможность слияния мелких перивентрикулярных кист со стенкой бокового желудочка.

Установлено, что ПВЛ достоверно чаще встречалась в 1-й группе — 18 (50,0 %) случаев, что в 1,5 раза выше по сравнению со 2-й и 3-й группами, в которых аналогичные показатели имели примерно одинаковые значения (33,3 % и 34,5 % соответственно; $p_{\Phi \nu \mu \nu \rho \rho \nu} < 0,001$). У новорожденных 4-й группы ПВЛ отмечена в 5 (7,1 %) случаях, что подчеркивает необходимость учитывать риски развития ПВЛ при рождении не только у детей до 28 нед., но и при поздней недоношенности.

Помимо случаев кПВЛ для энцефалопатии недоношенных новорожденных признаком поражения белого вещества у недоношенных детей является повышенная перивентрикулярная гиперэхогенность (ПВГЭ) на УЗИ. Диффузная ПВГЭ является нейровизуализирующим коррелятом диффузного нейропатологического компонента ПВЛ или перинатальной телэнцефальной лейкоэнцефалопатии. L. S. de Vries и соавт. разработали классификацию, описывающую УЗИ-спектр повреждения белого вещества и ПВЛ: 1 — стадия переходных перивентрикулярных плотностей (более 7 дней); 2 — локализованные кисты помимо на-

Таблица 1 Частота кистозной перивентрикулярной лейкомаляции у недоношенных новорожденных с разным сроком гестации по результатам нейросонографии

ПВЛ	1-я группа	2-я группа	3-я группа	4-я группа	Всего
Есть	18 (50,0 %)	17 (33,3 %)	19 (34,5 %)	5 (7,1 %)	59 (27,8 %)
Нет	18 (50,0 %)	34 (66,7 %)	36 (65,5 %)	65 (92,9 %)	153 (72,2 %)
Всего	36 (100 %)	51 (100 %)	55 (100 %)	70 (100 %)	212 (100 %)

ружного угла бокового желудочка; 3 — обширные кисты лобно-теменного и затылочного перивентрикулярного белого вещества (кПВЛ); 4 — обширные кисты в подкорковом белом веществе (кистозная подкорковая лейкомаляция) [10; 16]. Длительность сохранения ПВГЭ более 7 дней как коррелят легкого повреждения белого вещества у недоношенных детей, некоторые исследователи подвергают сомнению и предлагают рассматривать более длительные сроки ее сохранения (более 10 дней). Нами была проанализирована частота длительной ПВГЭ (14 дней и более) без последующего перехода в кПВЛ по результатам УЗИ головного мозга у недоношенных новорожденных детей (табл. 2).

Таблица 2 Частота исходов с нарушением и без нарушения в нейроразвитии у недоношенных детей в возрасте 2 лет

ПБВ Всего (n = 212)		Без нарушения в нейроразвитии (n = 71)	C нарушением в нейроразвитии (n = 141)	
ПВГЭ	112 (100 %)	29 (25,9 %)	83 (74,1 %)	
ПВЛ	59 (100 %)	1 (1,7 %)	58 (98,3 %)	
Нет	41 (100 %)	41 (100 %)	0 (0 %)	

Примечание: ПБВ — повреждение белого вещества головного мозга.

В общей когорте недоношенных детей (n = 212) в неонатальном периоде в 112 (52,8 %) случаях обнаружено длительное сохранение ПВГЭ без дальнейшей структурной трансформации в кПВЛ. При таком подходе в оценке частоты повреждения белого вещества головного мозга совместно со случаями кПВЛ (27,8 %) общий показатель изменений со стороны белого вещества достигает 72,1 % (153 случая). Наличие длительной ПВГЭ в неонатальном периоде в 2,41 раза (RR = 2,41, 95 % ДИ (1,83; 3,19); р $_{\text{Кохрейна} — Мантель — Ханцеля}$ < 0,001) повышает риски нарушений в нейроразвитии в раннем возрасте по сравнению со случаями без ПВГЭ, при которых в 100 % случаев (n = 41) недоношенные дети не имели отклонений в развитии в возрасте 2 лет.

При сопоставлении изменений со стороны белого вещества в неонатальном периоде и неврологическими исходами в возрасте 2 лет выявлено, что среди недоношенных детей с ПВГЭ более 10—14 дней в 74,1 % (83/112) случаев имели место неврологические нарушения и лишь в 25,9 % — неврологический статус, психоречевое развитие соответствовали возрасту. Среди детей с верифицированной кПВЛ в неонатальном периоде в 98,3 % (58/59) случаев в возрасте 2 лет недоношенные дети имели разнообразные отклонения в нейроразвитии со стороны двигательной или локомоторной функции или со стороны психоречевого, психологического развития. При отсутствии структурных изменений со стороны головного мозга и повреждения белого вещества в 100 % случаев отмечали нейроразвитие, соответствующее возрасту 2 лет.

Сравнение частоты по результатам НСГ длительной ПВГЭ и кПВК у недоношенных детей с разным сроком гестации представлено в табл. 3.

Сравнение ПВГЭ не выявило значимых различий между четырьмя группами с разным сроком гестации, в которых показатель ПВГЭ составил 50,0%, 43,1%, 60,0%, 55,7% соответственно.

Таким образом, повреждение белого вещества легкой степени отмечается более чем у половины новорожденных (52,8 %), при этом даже в 4-й группе (с поздней недоношенностью) ПВГЭ выявлена в 55,7 % случаев, кПВЛ — в 7,1 %, что подчеркивает

Таблица 3 Частота длительной перивентрикулярной гиперэхогенности и кистозной перивентрикулярной лейкомаляции по результатам нейросонографии в группах недоношенных детей

Группа	ПВГЭ	ПВГЭ	кПВЛ	Всего
Группа	менее 2 нед.	более 2 нед.	KIIBI	
1-я	0 (0,0 %)	18 (50,0 %)	18 (50,0 %)	36 (100,0 %)
2-я	12 (23,5 %)	22 (43,1 %)	17 (33,3 %)	51 (100,0 %)
3-я	3 (5,5 %)	33 (60,0 %)	19 (34,5 %)	55 (100,0 %)
4-я	26 (37,1 %)	39 (55,7 %)	5 (7,1 %)	70 (100,0 %)
Всего	41 (19,3 %)	112 (52,8 %)	59 (27,8 %)	212 (100,0 %)

необходимость активной медицинской абилитации не только у недоношенных с малыми сроками гестации, но и у поздних недоношенных детей, которых часто относят к «почти» доношенным, особенно при отсутствии четких клинических признаков неврологических нарушений в первые месяцы жизни, что может снижать настороженность и искажать прогнозы в отношении последующего нейроразвития в раннем возрасте.

Литература

- 1. Born too soon : The global action report on preterm birth / World Health Organisation. Geneva, Switzerland. 2012. URL: https://www.who.int/publications/i/item/9789241503433 (дата обращения: 20.01.2025).
- 2. Purisch, S. E. Epidemiology of preterm birth / S. E. Purisch, C. Gyamfi-Bannerman // Seminars in Perinatology. 2017. Vol. 41, N 7. P. 387—391.
- 3. За последние 10 лет в мире родились недоношенными 152 млн детей / Организация Объединенных Наций. 2023. URL: https://news.un.org/ru/story/2023/05/1440847 (дата обращения: 20.01.2025).
- 4. Clinical characteristics and long-term neurodevelopmental outcomes of leukomalacia in preterm infants and term infants: a cohort study / Juan Song, Yuyang Yue, Huiqing Sun [et al.] // Journal of Neurodevelopmental Disorders. 2023. Vol. 15, N Ω 1. P. Ω 24.
- 5. Жевнеронок, И. В. Современные представления о механизмах формирования перивентрикулярной лейкомаляции у недоношенных новорожденных / И. В. Жевнеронок, Л. В. Шалькевич, А. В. Лунь // Репродуктивное здоровье. Восточная Европа. 2020. Т. 10, № 3. С. 350—356.
- 6. Volpe, J. J. Neurobiology of periventricular leukomalacia in the premature infant / J. J. Volpe // The Journal of Pediatric Research. 2001. Vol. 50, \mathbb{N}^{0} 5. P. 553—562.
- 7. Clinical neuroimaging in the preterm infant: diagnosis and prognosis / M. Hinojosa-Rodriguez, T. Harmony, C. Carrillo-Prado [et al.] // NeuroImage: Clinical. 2017. Vol. 16. P. 355—368.
- 8. Митьков, В. В. Практическое руководство по ультразвуковой диагностике / В. В. Митьков, М. В. Медведев. Изд. 3-е., перераб. и доп. М. : Видар, 2019. 756 с.
- 9. Структурные изменения головного мозга при гипоксически-ишемическом поражении центральной нервной системы у новорожденных разного гестационного возраста. Сопоставление эхографической картины с данными морфологических исследований / Ю. К. Быкова, Е. А. Филиппова, К. В. Ватолин $[u \ dp.]$ // Неонатология: новости, мнения, обучение. 2016. \mathbb{N} 3. С. 28—38.
- 10. Preterm white matter injury: ultrasound diagnosis and classification / T. Agut, A. Alarcon, F. Cabañas [et al.] // The Journal of Pediatric Research. 2020. Vol. 87, suppl. 1. P. 37—49.
- 11. The developing oligodendrocyte: key cellular target in brain injury in the premature infant / J. J. Volpe, H. C. Kinney, F. E. Jensen, P. A. Rosenberg // International Journal of Developmental Neuroscience. 2011. Vol. 29. P. 423—440.

- 12. Decreasing incidence and severity of cerebral palsy in prematurely born children / I. C. van Haastert, F. Groenendaal, C. S. P. M. Uiterwaal [et al.] // The Journal of Pediatrics. 2011. Vol. 159, N 1. P. 86—91.
- 13. High-field diffusion tensor imaging characterization of cerebral white matter injury in lipopolysaccharide-exposed fetal sheep / Y. van de Looij, G. A. Lodygensky, J. Dean [et al.] // The Journal of Pediatric Research. 2012. Vol. 72, Nole 20. Vol. 72
- 14. Gray matter injury associated with periventricular leukomalacia in the premature infant / C. R. Pierson, R. D. Folkerth, S. S. Billiards [et al.] // Acta Neuropathologica. 2007. Vol. 114. P. 619—631.
- 15. Early Conventional MRI for Prediction of Neurodevelopmental Impairment in Extremely-Low-Birth-Weight Infants / L. A. Slaughter, E. Bonfante-Mejia, S. R. Hintz [et al.] // Neonatology. 2016. Vol. 110, Nº 1. P. 47—54.
- 16. De Vries, L. S. The spectrum of leukomalacia using cranial ultrasound / L. S. de Vries, P. Eken, L. M. Dubowitz // Behavioural Brain Research . 1992. Vol. 49. P. 1-6.

Контактная информация:

Жевнеронок Ирина Владимировна— к. м. н., доцент, зав. 2-й кафедрой детских болезней БГМУ, главный внештатный специалист по наследственным нервно-мышечным заболеваниям у детей Министерства здравоохранения Республики Беларусь.

Белорусский государственный медицинский университет.

Пр. Дзержинского, 83, 220083, г. Минск.

Сл. тел. + 375 17 374-89-30.

Участие авторов:

Концепция и дизайн исследования: И. В. Ж.

Сбор информации и обработка материала: И. В. Ж.

Выполнение нейросонографических исследований: О. В. Ш.

Написание текста: И. В. Ж. Редактирование: В. Б. С., Л. В. Ш. **Конфликт интересов отсутствует.**

> Поступила 27.01.2025 Принята к печати 28.01.2025