СКРИНИНГ ПРОТИВОМИКРОБНОЙ АКТИВНОСТИ АНТИБАКТЕРИАЛЬНЫХ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ КАК ЭКСПРЕСС-МЕТОД ОЦЕНКИ ПРОТЕКАНИЯ ХИМИЧЕСКОЙ УТИЛИЗАЦИИ ФАРМАЦЕВТИЧЕСКИХ ОТХОДОВ

Михайлова Н.И., старший преподаватель кафедры фармацевтической химии Руководитель: Аукашов Р.И., к.фарм.н., доцент, заведующий кафедрой фармацевтической химии Учреждение образования «Белорусский государственный медицинский университет» Республика Беларусь, 220083, г. Минск, пр. Дзержинского, 83, корпус 15

Е-mail: n_mihaylova91@mail.ru

В настоящей статье представлены результаты скрининга противомикробной активности продуктов химической деструкции цефтриаксона натрия и азитромицина, образовавшихся при взаимодействии испытуемых веществ с пероксидом водорода и реактивом Фентона. Показано, что оба антибактериальных лекарственных средства утратили свои антимикробные свойства в отношении культуры Staphylococcus aureus после химической деструкции реактивом Фентона, что делает данный способ обезвреживания перспективной альтернативой термической утилизации.

Ключевые слова: цефтриаксон натрия, азитромицин, обезвреживание, утилизация, реактив Фентона, пероксид водорода, антимикробная активность.

Безопасное обращение и утилизация фармацевтических отходов становится как никогда актуальной задачей в условиях постоянно растущего рынка лекарственных препаратов. По статистике до 8 % лекарственных препаратов, приобретаемых населением, остаются неиспользованными, при этом в отдельных случаях эта цифра может достигать 50 %. Лекарственные препараты обнаруживаются в водоемах многих стран мира, в том числе – в питьевой воде. Для антибактериальных лекарственных средств проблема корректной утилизации стоит еще более остро в связи с тем, что в последние годы все больше растет антибиотикорезистентность микроорганизмов, риски развития которой растут в условиях нерационального применения и утилизации данной группы лекарственных препаратов [1].

В Республике Беларусь лекарственные препараты зачастую обезвреживают в ходе сжигания при температуре 900-1200 °С. Однако использование данного подхода требует специального дорогостоящего оборудования, а также сопряжено с рисками выброса токсичных продуктов сгорания в атмосферу. Согласно действующей инструкции о правилах и методах обезвреживания отходов лекарственных средств, изделий медицинского назначения и медицинской техники [2] антибактериальные лекарственные препараты можно обезвреживать при помощи 10 % раствора гидроксида натрия в соотношении 9 к 1, после выдерживания лекарства в растворе реактива в течение 2 недель смесь нейтрализуют до нейтральной рН, и раствор сливают в канализацию после разбавления десятикратным избытком воды. Однако не изучена полнота протекания процессов деструкции антибактериальных лекарственных средств данным методом, а некоторые антибиотики (например, азитромицин) не взаимодействуют с гидроксидом натрия даже при нагревании, что делает невозможным применение такого метода.

Цель исследования — провести химическое обезвреживание антибактериальных лекарственных средств (на примере цефтриаксона натрия и азитромицина), и апробировать методику скрининга антимикробной активности на культуре Staphylococcus aureus в качестве качественного метода доказательства утраты антибактериальными лекарственными средствами их противомикробных свойств.

Задачи исследования:

- 1. Провести химическую деструкцию цефтриаксона натрия и азитромицина с использованием реактива Фентона и пероксида водорода.
- 2. Изучить антимикробную активность образовавшихся продуктов деструкции методом диффузии в агар на культуре Staphylococcus aureus.
- В качестве способов химической деструкции цефтриаксона натрия и азитромицина использовали следующие подходы:
- 1) окисление пероксидом водорода 30 % (для растворения азитромицина добавляли 2-3 капли кислоты хлористоводородной, разведенной в реакционную смесь);
 - 2) окисление реактивом Фентона (сульфат железа (II), пероксид водорода 30 %).

Контроль протекания деструкции осуществляли спектрофотометрическим методом по регистрации значений оптической плотности при длине волны, соответствующей максимуму поглощения исходных растворов с помощью спектрофотометра Solar серии PB2201. Для характеристики степени протекания химической деструкции вещества рассчитывали процент уменьшения оптической плотности раствора при длине волны 200 нм по формуле (1):

% изм. =
$$\frac{A_{\text{исх}} - A_{\text{кон}}}{A_{\text{исх}}} \times 100\%$$
 (1),

где $A_{\text{\tiny HCX}}$ – оптическая плотность исходного раствора,

 $A_{_{\!\scriptscriptstyle KOH}}$ – оптическая плотность испытуемых растворов на 7 сутки.

Для приготовления испытуемых образцов пробы цефтриаксона натрия и азитромицина после деструкции действующего вещества разводили водой дистиллированной в соотношении 1 к 10 и доводили уровень pH до 7.

Скрининг противомикробной активности продуктов деструкции цефтриаксона натрия и азитромицина осуществляли методом диффузии в агар на плотной питательной среде согласно требованиям ГФ РБ II, Т. 1, ст. 2.7.2 [2]. Определяли размер зоны ингибирования роста тест-культуры Staphylococcus aureus (ATCC 25923). Чистые культуры микроорганизмов предварительно выращивали при 37 $^{\circ}$ С в течение 24 ч на скошенном мясопептонном агаре. Затем бактериологической петлей вносили исследуемую культуру микроорганизма в стерильный флакон с 2 мл стерильного раствора 9 г/л натрия хлорида $^{\circ}$ Р, полученную суспензию встряхивали и доводили до оптической плотности 0,125 при длине волны 550 нм.

На застывший в чашках Петри агар в стерильных условиях наносили по 1,0 мл суспензии микроорганизмов. Равномерно распределяли суспензию микроорганизмов по всей поверхности агара, а затем выдерживали при комнатной температуре в течение 10 мин. Избыток суспензии сливали в дезинфицирующий раствор. Затем в чашке с микроорганизмами делали лунки диаметром 6 мм, в которые вносили 50 мкл испытуемого раствора, в одну из лунок каждой чашки вносили растворитель (воду Р). После внесения проб в лунки чашки с культурами оставляли при комнатной температуре на 1–2 ч для диффузии испытуемых растворов в агар и уменьшения влияния колебаний во времени между внесением проб. Инкубировали при температуре 37 °С в течение 24 ч и оценивали рост микроорганизмов.

Изменение оптической плотности раствора и формы спектра поглощения цефтриаксона натрия после окисления реактивом Фентона представлена на рисунке 1. При длине волны 200 нм через 7 дней после проведения реакции оптическая плотность реакционной смеси уменьшилась на 69,6 %. При этом при длине волны 276 нм образовался новый пик, который указывает на образование нового продукта деструкции.

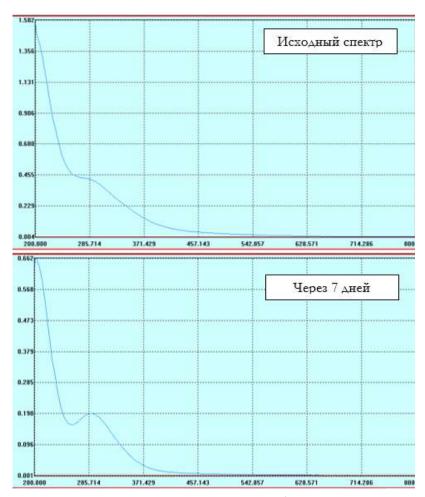


Рисунок 1. Изменение спектра поглощения реакционной смеси цефтриаксона натрия с реактивом Фентона

Изменение оптической плотности раствора и формы спектра поглощения цефтриаксона натрия после окисления пероксидом водорода представлена на рисунке 2. При длине волны 200 нм через 7 дней после проведения реакции оптическая плотность реакционной смеси уменьшилась на 28,98 %. При этом изменилась также форма спектра, что указывает на протекание процессов химической деструкции реакционной смеси.

Изменение оптической плотности раствора и формы спектра поглощения азитромицина после окисления реактивом Фентона и пероксидом водорода 30~% представлена на рисунках 3 и 4 соответственно. При длине волны 200 нм через 7 дней после проведения реакции оптическая плотность реакционной смеси «азитромицин + реактив Фентона» снизилась на 54,6~%, «азитромицин+пероксид водорода» – на 26,9~%, что свидетельствует о протекании процесса химической деструкции действующего вещества.

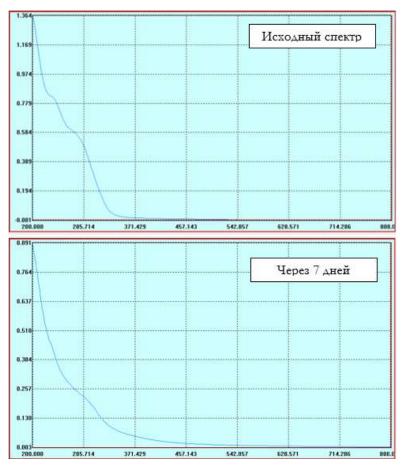


Рисунок 2. Изменение спектра поглощения реакционной смеси цефтриаксона натрия с пероксидом водорода 30 %

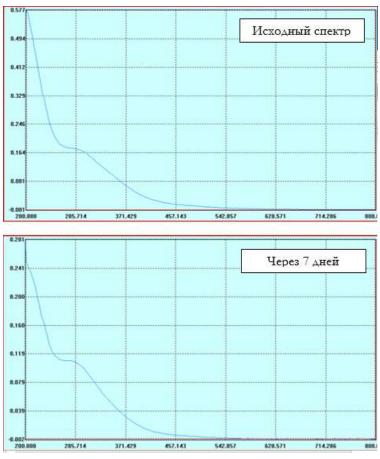


Рисунок 3. Изменение спектра поглощения реакционной смеси азитромицина с реактивом Фентона

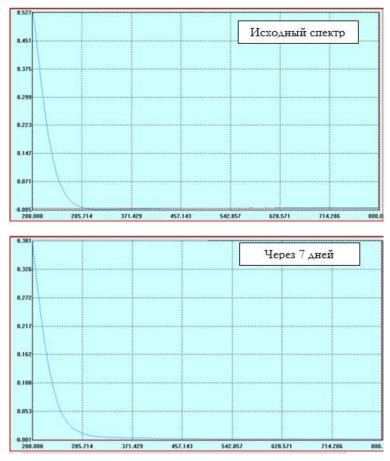


Рисунок 4. Изменение спектра поглощения реакционной смеси азитромицина с пероксидом водорода 30 %

Установлено, что как у азитромицина, так и у цефтриаксона натрия в ходе химической деструкции при использовании реактива Фентона антимикробная активность снизилась на 73 % и 66,15 % соответственно (зона подавления роста *Staphylococcus aureus* соответствует аналогичной зоне контрольного образца реактива Фентона без добавления к нему антибактериальных лекарственных средств).

Зоны подавления антимикробной активности азитромицина и цефтриаксона натрия после окисления пероксидом водорода соответствуют контрольному образцу раствора пероксида водорода и превышает зоны антимикробной активности исходных испытуемых образцов до проведения деструкции. Так как испытуемый контрольный образец пероксида водорода обладает высокой исходной антимикробной активностью, для возможности использования данного метода в качестве химической деструкции антибактериальных лекарственных средств необходимо проведение предварительной деструкции пероксида водорода.

В ходе исследования показано, что как азитромицин, так и цефтриаксон натрия подвергаются химической деструкции с использованием пероксида водорода 30 % и реактива Фентона. В обоих случаях наблюдается снижение оптической плотности раствора.

В ходе скрининга антимикробной активности показано, что как азитромицин, так и цефтриаксон натрия утрачивают антимикробные свойства в отношении *Staphylococcus aureus* после деструкции с реактивом Фентона, в связи с чем данный способ химического обезвреживания является перспективной альтернативой термической утилизации и требует дальнейшей идентификации продуктов деструкции и анализа их токсичности на растительных и животных организмах.

ТЕМАТИЧЕСКИЕ РУБРИКИ

76.31.35 Фармхимия 76.01.94 Охрана окружающей среды

ЛИТЕРАТУРА

- 1. Distribution and persistence of cephalosporins in cephalosporin producing wastewater using SPE and UPLC-MS/MS method / X. Yu [et al.] // Sci. Total Environ. 2016. Vol. 569–570. P. 23–30. doi:10.1016/j.scitotenv.2016.06.113
- 2. Об утверждении инструкции о правилах и методах обезвреживания отходов лекарственных средств, изделий медицинского назначения и медицинской техники: постановление министерства здравоохранения Республики Беларусь, 22 ноября 2002 г. № 81 //Национальный центр правовой информации Республики Беларусь. URL: https://pravo.by/document/?guid=3961&p0=W20309049 (Дата обращения: 03.02.2024).

3. Государственная фармакопея Республики Беларусь. В 2 т. Т. 1: Общие методы контроля качества лекарственных средств / под общ. ред. А. А. Шерякова; М-во здравоохранения Республики Беларусь, УП «Центр экспертиз и испытаний в здравоохранении». Молодечно: «Победа», 2012. 1220 с.

SUMMARY

SCREENING OF ANTIMICROBIAL ACTIVITY OF ANTIBACTERIAL DRUGS AS A RAPID METHOD FOR ASSESSING THE PROGRESS OF CHEMICAL DISPOSAL OF PHARMACEUTICAL WASTE

Mikhailava N.I., senior lecturer of the Department of of Pharmaceutical Chemistry Supervisor: Lukashou R.I., candidate of pharmaceutical sciences, associate professor, head of the department of pharmaceutical chemistry

Belarusian State Medical University

220083, Minsk, Dzerzhinsky Ave., 83, Republic of Belarus

E-mail: n_mihaylova91@mail.ru

This article presents the results of screening the antimicrobial activity of the chemical destruction products of ceftriaxone sodium and azithromycin, formed by the interaction of the test substances with hydrogen peroxide and Fenton's reagent. It was shown that both antibacterial drugs lost their antimicrobial properties against the culture of Staphylococcus aureus after chemical destruction with Fenton's reagent, which makes this method of neutralization a promising alternative to thermal disposal.

Key words: ceftriaxone sodium, azithromycin, neutralization, disposal, Fenton's reagent, hydrogen peroxide, antimicrobial activity.

REFERENCES

- 1. Distribution and persistence of cephalosporins in cephalosporin producing wastewater using SPE and UPLC-MS/MS method / X. Yu [et al.] // Sci. Total Environ. 2016. Vol. 569–570. P. 23–30. doi:10.1016/j.scitotenv.2016.06.113
- 2. Ob utverzhdenii instrukcii o pravilah i metodah obezvrezhivanija othodov lekarstvennyh sredstv, izdelij medicinskogo naznachenija i medicinskoj tehniki: postanovlenie ministerstva zdravoohranenija Respubliki Belarus', 22 nojabrja 2022 g. N 81 // Nacional'nyj centr pravovoj informacii Respubliki Belarus'. Available at: https://pravo.by/document/?guid=3961&p0 =W20309049 (Accessed: 03.02.2024).(In Russ).
- 3. Gosudarstvennaja farmakopeja Respubliki Belarus'. v 2 t. T. 1: Obshhie metody kontrolja kachestva lekarstvennyh sredstv / pod obshh. red. A.A. Sherjakova; M-vo zravoohranenija Respubliki Belarus', UP "Centr jekspertiz i ispytanij v zdravoohranenij". Molodechno: «Pobeda», 2012. 1220 s. (In Russ).

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ХИМИКО-ФАРМАЦЕВТИЧЕСКИЙ УНИВЕРСИТЕТ»

МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ХІV ВСЕРОССИЙСКАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ С МЕЖДУНАРОДНЫМ УЧАСТИЕМ МОЛОДЕЖНОГО НАУЧНОГО ОБЩЕСТВА

«МОЛОДАЯ ФАРМАЦИЯ – ПОТЕНЦИАЛ БУДУЩЕГО»

28 марта – 02 апреля 2024 года

СБОРНИК MATEPUAAOB КОНФЕРЕНЦИИ PROCEEDINGS OF THE CONFERENCE

