Эффективность использования сухой иммерсии в медицинской абилитации недоношенных новорожденных

¹И. В. Жевнеронок, ¹Л. В. Шалькевич, ²О. В. Шалькевич

¹Белорусский государственный медицинский университет, Минск, Беларусь ²Республиканский научно-практический центр «Мать и дитя», Минск, Беларусь

Цель исследования. Оценить эффекты сухой иммерсии, имитирующей эффекты микрогравитации, в комплексной медицинской абилитации (МА) недоношенных новорожденных.

Материал и методы. В исследование включено 212 недоношенных детей со сроком гестации от 26 до 37 нед. в возрасте от рождения до 2 лет включительно. Критерии включения: недоношенные дети со сроком гестации менее 37 нед., самостоятельное дыхание, согласие родителей на проведение разработанной МА. Критерии исключения: врожденные пороки развития, генетические заболевания обмена веществ, искусственная вентиляция легких, агрессивная ретинопатия. Перед началом проведения МА сформировано две группы: 1-я группа — пациенты, которым выполняли в неонатальном периоде сухую иммерсию (n = 67); 2-я группа — пациенты, которым МА проводили без сухой иммерсии (n = 145). Методом целевого отбора выполнено когортное проспективное лонгитудинальное сравнительное исследование.

Результаты. Установлено, что во 2-й группе после завершения МА с применением сухой иммерсией частота случаев перивентрикулярного отека по результатам нейросонография достоверно в 2,2 раза снизилась (р $_{\text{Кохрейна} - \text{Мантеля} - \text{Ханцеля}} < 0,001$). Интеграция в программу МА сухой иммерсии и ее применение в неонатальном периоде оказывают отсроченный эффект и почти в 3 раза увеличивают шансы на снижение нервно-рефлекторной возбудимости (ОШ = 2,95, 95 % ДИ (1,61; 5,37), $p_{\text{Кохрейна} - \text{Манцеля} - \text{Ханцеля}} = 0,0006$).

Заключение. Воспроизведение эффектов микрогравитации в условиях комплексной МА и реабилитации с применением метода сухой иммерсии в неонатальном периоде способствует более быстрому исчезновению перивентрикулярного отека по результатам нейросонографии, оказывает долгосрочные эффекты на нейроразвитие с уменьшением нервно-рефлекторной возбудимости в первые месяцы жизни и благоприятным влиянием на исходы развития в возрасте 2 лет.

Ключевые слова: микрогравитация, сухая иммерсия, недоношенные новорожденные, абилитация.

Objective. To evaluate the effectiveness of medical habilitation (MH) using dry immersion for encephalopathy in premature infants.

Materials and methods. The study included 212 premature infants with a gestational age of 26 to 37 weeks, aged from birth to 2 years inclusive. Inclusion criteria: premature infants with a gestational age of less than 37 weeks, spontaneous breathing, parental consent to the developed MH. Exclusion criteria: congenital malformations, genetic metabolic diseases, artificial lung ventilation, aggressive retinopathy, lack of parental consent for MH. Before the start of MH, two groups were formed: group 1 — patients who underwent dry immersion in the neonatal period and group 2 — patients who underwent MH without dry immersion.

Results. It was established that in the group 2, after completion of MA using dry immersion, the incidence of periventricular edema according to the results of neurosonography significantly decreased by 2.2 times ($p_{Cochrane - Mantel - Haenszel} < 0.001$). Integration of dry immersion into the MA program and its use in the neonatal period have a delayed effect and almost 3 times increase the chances of reducing neuroreflex excitability (OR = 2.95, 95% CI (1.61; 5.37); $p_{Cochrane - Mantel - Haenszel} = 0.0006$).

Conclusion. Reproduction of microgravity effects under complex MA conditions using the dry immersion method in the neonatal period promotes more rapid disappearance of periventricular edema according to neurosonography results, has long-term effects on neurodevelopment with a decrease in neuroreflex excitability in the first months of life and a favorable effect on developmental outcomes at the age of 2 years.

Key words: microgravity, dry immersion, premature infants, habilitation.

HEALTHCARE. 2025; 4: 13—22
EFFECTIVENESS OF DRY IMMERSION IN MEDICAL ABILITATION OF PREMATURE INFANTS
I. Zhauniaronak, L. Shalkevich, O. Shalkevich

Приоритетным направлением системы здравоохранения является не только устойчивое снижение младенческой смертности, но и повышение качества жизни каждого родившегося ребенка [1]. Выживаемость недоношенных новорожденных увеличилась в связи с повышением уровня неонатальной интенсивной терапии, но риск развития инвалидности из-за повреждения мозга остается высоким, что в долгосрочном прогнозе приводит к высоким затратам на лечение [2]. Следовательно, даже незначительное снижение последствий с неврологическими нарушениями или инвалидности у этой категории пациентов принесло бы большую прямую экономическую выгоду и снизило бы нагрузку на семью и государство в целом. Термин «неврологические нарушения», применяемый для детей раннего возраста, означает отклонения в одной из функций нервной системы (двигательной, координаторной, доречевой или речевой, психической) или отставание от возрастных норм развития детей в одной или более областях развития на один эпикризный срок и более вследствие изменений в состоянии здоровья и (или) неблагоприятного влияния среды, в том числе с риском появления ограничений жизнедеятельности [3].

Категория недоношенных детей имеет определенные анатомо-физиологические особенности, закономерности развития, связанные в том числе с факторами окружающей среды. Новорожденный ребенок имеет ряд врожденных или безусловных рефлексов, которые редуцируются в первые месяцы жизни, уступая место появлению условных, позволяющих обеспечивать необходимый уровень взаимодействия с окружающей средой после рождения. Именно в течение первого года жизни ребенок приобретает возможность поднимать голову, сидеть, стоять, ходить, что связано с совершенствованием регуляции мышечного тонуса и координации. Анализ последовательности и времени приобретения недоношенными детьми двигательных и психоречевых навыков позволяет оценить степень соответствия нормативным данным с учетом коррекции по сроку гестации. Выявление у ребенка несоответствия между имеющимися параметрами неврологического статуса и долженствующими на конкретный возрастной период трактуется как задержка моторного или психомоторного развития, причем отставание в двигательной или психической сфере может наблюдаться с момента рождения, также может проявляться в определенный период без предшествующих отклонений. Установленная задержка не является фиксированным диагнозом и при проведении соответствующих мероприятий медицинской абилитации (МА) или реабилитации может достигать нормального уровня развития. Сохранение патологических изменений в неврологическом статусе после первого года жизни указывает на их стойкий характер с формированием инвалидизирующей патологии. С этих позиций проведение абилитационных мероприятий необходимо начинать на самом раннем этапе, однако унифицированной системы МА для недоношенных детей в настоящее время не разработано.

Недоношенные дети имеют большой риск развития двигательных, когнитивных, речевых, поведенческих нарушений по сравнению с доношенными [4; 5]. В связи с раз-

работкой новых медицинских технологий, позволяющих выхаживать детей с крайней степенью недоношенности, сочетанными нарушениями, особое значение приобретает МА, максимально направленная на возможную адаптацию нарушенных функций ребенка и обеспечение высокого качества жизни пациентов с перинатальной патологией и ее последствиями в раннем и отдаленном периодах. В основе развития перинатальных поражений центральной нервной системы лежат разнообразные факторы, влияющие на плод в антенатальном периоде, интранатально и в неонатальном периоде. Воздействие внутриутробных инфекций, метаболических нарушений и других экзогенных и эндогенных факторов оказывают неспецифическое повреждающее воздействие на нервную систему плода и приводят к гипоксии, развитие которой, в свою очередь, запускает комплекс гемореологических, микроциркуляторных, метаболических расстройств, способствуя развитию кровоизлияний, ишемии, формированию лейкомаляции вещества головного мозга [6; 7]. Также большое значение имеет невынашивание, поскольку недоношенный ребенок в большинстве случаев еще не готов к процессу родов и по сравнению с доношенными получает значительные повреждения. К интранатальным повреждающим факторам относят патологические воздействия в период родов, неизбежно сказывающиеся на функционировании нервной системы ребенка: отсутствие или слабая выраженность схваток, стремительные роды, применение ручных родовспомогательных приемов, обвитие плода пуповиной, несоответствие размеров плода и таза; также группой риска в отношении интранатальных повреждений являются недоношенные дети.

Независимо от причины гипоксии у недоношенных новорожденных вторично возникают расстройства дыхательной и сердечно-сосудистой деятельности, которые усугубляют нарушения обменных процессов и увеличивают расстройства центральной и периферической гемодинамики, создавая предпосылки к внутричерепному кровоизлиянию. При тяжелых перинатальных поражениях, в последующем приводящих к инвалидности, особое место занимают эпилепсия, детский церебральный паралич, нарушение развития, гипотония центрального генеза [7—9]. Результаты исследований детей в отдаленном периоде после энцефалопатии средней степени тяжести показывают, что порядка 30—50 % из них имеют серьезные долгосрочные последствия с нарушением нейроразвития, и 10—20 % имеют небольшие отклонения. По данным катамнестического исследования установлено, что даже при отсутствии явных симптомов повреждения мозга и очевидных неврологических симптомов в периоде новорожденности в дальнейшем у таких детей в 10—20 % могут наблюдаться значительные трудности в обучении [10].

В последнее десятилетие помимо традиционных подходов в МА особый интерес вызывают новые направления и разработки, которые давно и широко применялись в космической медицине для подготовки летного состава и изучения эффектов микрогравитации на организм и его системы [11—13].

Гравитация является постоянно действующей силой на окружающие объекты, а одним из наиболее важных компонентов силы тяжести на организм человека является гидростатический компонент давления крови и других биологических жидкостей. В соответствии с направлением вектора силы тяжести происходит перераспределение жидкостных сред организма, что приводит к изменению показателей общей

гемодинамики и других органов и систем [14]. Для изучения влияния невесомости и микрогравитации на организм используют модели, которые подразделяются на воспроизводящие первичные эффекты невесомости (патогенетические) и соответствующие промежуточным или конечным эффектам микрогравитации (симптоматические) [14]. К основным патогенетическим моделям относят длительное пребывание человека в горизонтальном или антиортостатическом положении, наиболее распространенными наземными методами, используемыми для имитации невесомости и микрогравитации, являются водное погружение и сухое, которое выполняется путем погружения в водную среду без прямого контакта с ней, для этого применяют непроницаемый тканевый барьер между объектом и водой — такой метод получил название сухой иммерсии.

Невесомость и микрогравитация оказывают на организм системное воздействие, влияя на работу сердечно-сосудистой системы, в том числе на гемодинамику и микроциркуляцию, а также на дыхательную, скелетно-мышечную и другие системы [11—15]. В исследованиях, проводимых с участием космонавтов и летного состава, было установлено, что исчезновение гравитационных давлений в тканях и кровообращении человека приводит к немедленным и долгосрочным последствиям, которые порой имеют парадоксальный характер. В ранних исследованиях было показано, что в невесомости основным этиологическим фактором, приводящим к возникновению циркуляторных расстройств, перестройке нейрогуморальных механизмов, изменению гемо- и кардиодинамики, является смещение жидкостных сред организма в краниальном направлении [6; 10]. В связи с этим одним из важных направлений изучения адаптации к условиям невесомости является вопрос о динамике центрального венозного давления (ЦВД) как основного фактора, инициирующего компенсаторные сердечно-сосудистые и нейрогуморальные механизмы, приводящие к увеличению сердечного выброса, увеличению экскреции почками жидкости и электролитов и уменьшению объема циркулирующей крови. Длительное время существовало мнение, что увеличение ЦВД в начальном периоде адаптации к невесомости является определяющим фактором для активации компенсаторных сердечно-сосудистых и нейрогуморальных реакций. Однако новые медико-физиологические данные, полученные на орбитальных станциях, позволили выявить иные закономерности в реакциях сердечно-сосудистой системы и пересмотреть уже сложившиеся концепции. Измерения ЦВД у космонавтов с использованием современных косвенных и прямых методов в условиях реальной невесомости позволили обнаружить, что в начальном периоде адаптации происходит снижение ЦВД, а не его повышение, как предполагалось ранее. Вместе с тем известно, что снижение ЦВД должно сопровождаться уменьшением объема сердечного выброса. Однако, как показали результаты обследований космонавтов, в первые часы пребывания в невесомости, несмотря на снижение ЦВД, увеличиваются ударный и минутный объемы сердца [14]. Таким образом, в начальном периоде невесомости складывается ситуация, при которой, несмотря на центральную гиперволемию, ЦВД снижается, но ударный объем и сердечный выброс увеличиваются. Механизмы, происходящие со стороны функционирования ряда органов и систем в условиях микрогравитации, продолжают обсуждаться и изучаться.

Метод сухой иммерсии используется не только в космической медицине, его также начали внедрять в клиническую практику, при этом используют специально разработанные кровати с системой, воспроизводящей эффекты антигравитации.

Проведенные исследования в Московском научно-практическом центре реабилитационных технологий по изучению эффектов сухой иммерсии в комплексной реабилитации двигательных нарушений у детей с детским церебральным параличом показали, что данный метод может являться базовым компонентом для комплексной реабилитации пациентов со спастическими формами церебрального паралича и способствует нормализации мышечного тонуса и активности вегетативной и соматической нервных систем. Также исследования по реабилитации детей первого года жизни с последствиями перинатального поражения центральной нервной системы показали, что у детей, получавших курс сухой иммерсии, достоверно уменьшалась частота проявления неврологической симптоматики, а также степень ее выраженности, при этом степень достоверности положительной динамики при синдроме угнетения центральной нервной системы была выше, чем при синдроме повышенной возбудимости [16—18].

Внутриутробное развитие плода также с определенной долей можно отнести к этапу развития в условиях микрогравитации, поскольку большую часть внутриутробного существования он находится в околоплодных водах. После рождения происходит адаптационная функциональная перестройка гемодинамики, в том числе и центральной гемодинамики, дыхательной системы и др., которые в условиях патологического интранатального и раннего неонатального периодов могут быть нарушены с формированием ранних и отсроченных последствий и неврологических нарушений [7; 10]. Ранняя МА новорожденных с использованием сухой иммерсии в неонатальном периоде наряду с проводимым медикаментозным лечением может дать положительные эффекты за счет имитации «внутриутробного» состояния микрогравитации и удлинения срока, необходимого для адаптационного периода и функциональной перестройки органов и систем.

В настоящее время нет единого мнения в отношении начала МА у недоношенных детей. Более того, врачами в неонатальном периоде соблюдается международный подход с принципом максимальной защиты преждевременно рожденного ребенка от сенсорной перегрузки и минимизацией внешнего воздействия на организм. Это требует дальнейших исследований в отношении вмешательств, которые могут быть применены максимально рано в неонатальном периоде у недоношенных новорожденных с высоким риском последующих неврологических нарушений, поскольку именно в этот период двигательные и сенсорные пути имеют наиболее высокую пластичность мозга.

Цель исследования — оценить эффекты сухой иммерсии, имитирующей эффекты микрогравитации, в комплексной МА недоношенных новорожденных.

Материал и методы

Работа выполнена на клинической базе кафедры детской неврологии в ГУ «Республиканский научно-практический центр «Мать и дитя» с проведением исследования в педиатрических отделениях для недоношенных детей, а также на последующих этапах в возрасте до 1 года и до 2 лет в УЗ «Минский городской центр медицинской реабилитации детей с психоневрологическими нарушениями».

В исследование включено 212 недоношенных детей со сроком гестации от 26 до 37 нед. в возрасте от рождения до 2 лет включительно. Критерии включения: недоношенные дети со сроком гестации менее 37 нед., самостоятельное дыхание, согласие родителей на проведение разработанной МА. Критерии исключения: врожденные пороки развития, генетические заболевания обмена веществ, искусственная вентиляция легких (ИВЛ), агрессивная ретинопатия, отсутствие согласия родителей на проведение МА.

Перед началом проведения МА сформировано две группы: 1-я группа — пациенты, которым выполняли в неонатальном периоде сухую иммерсию; 2-я группа — пациенты, которым МА проводили без использования сухой иммерсии. Методом целевого отбора выполнено когортное проспективное лонгитудинальное сравнительное исследование.

После перевода недоношенного ребенка из отделения интенсивной терапии на этап выхаживания в отделении выполняли метод сухой иммерсии с помощью лечебно-реабилитационных кроватей (КМ-07 «САТУРН-90»). На начальном этапе длительность процедуры составляла 30 мин, далее увеличивали до 60 мин в день, периодичность — 1 раз в день, курс — 10—15 процедур.

В дальнейшем на амбулаторном этапе проводили позиционное укладывание в гамаке и гидротерапию, при этом для разработки подходов гидротерапии для недоношенных детей учтены методы, использованные в исследовании Ј. К. Sweeney и С. Vignochi [19; 20]. Данный метод применяли в домашних условиях после выписки с этапа выхаживания, начинали под контролем специалиста-инструктора. Младенца помещали в воду с температурой 37,2—38 °С с поддержанием головы, шеи, таза. В первую минуту давали адаптироваться в водной среде, затем в течение 10 мин выполняли вращательные движения, при этом голова и шея оставались неподвижными, затем таз оставался неподвижным для выполнения движений верхних конечностей. Программу осуществляли через день в течение 1 мес.

Оценку влияния сухой иммерсии в МА проводили по следующим показателям: длительность сохранения перивентрикулярной гиперэхогенности по результатам динамического нейросонографического исследования, нарушения сна и исходы развития в скорригированном возрасте 2 лет с бинарным делением на случаи с неврологическими нарушениями и без таковых в итоговой точке исследования.

Статистической обработке подвергали количественные и качественные показатели. Для сравнения качественных данных, которые можно представить в виде таблиц сопряженности 2×2, применяли двусторонний точный тест Фишера. Для сравнения качественных стратифицированных данных, которые можно представить в виде множества таблиц сопряженности 2×2, применяли тест Кохрейна — Мантеля — Ханцеля. При принятии решения о равенстве групп (при отсутствии различий) в качестве порогового значения определяли р = 0,05. Различия считали статистически значимыми при р < 0,05. Статистическая обработка результатов исследования проведена с использованием системы R, которая была разработана на статистическом факультете Оклендского университета, доступна под лицензией GNU GPL и распространяется в виде исходных кодов и приложений.

Результаты и обсуждение

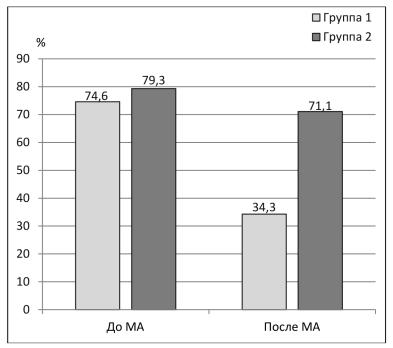

Проанализирована частота случаев перивентрикулярного отека по результатам нейросонографии у недоношенных новорожденных до проведения МА в двух группах (табл. 1).

Таблица 1

Частота случаев перивентрикулярного отека по результатам нейросонографии до проведения медицинской абилитации у недоношенных новорожденных

Группа	Перивентикулярный отек	Отсутствие перивентикулярного отека	Всего
1-я	50 (74,6 %)	17 (25,4 %)	67 (100,0 %)
2-я	115 (79,3 %)	30 (20,7 %)	145 (100,0 %)
Всего	165 (100,0 %)	47 (100,0 %)	212 (100,0 %)

Выявлено, что до момента начала МА с сухой иммерсией частота случаев перивентрикулярного отека была высокой и составила: в 1-й группе — 74,6 % (50/67), во 2-й группе — 79,3 % (115/145), при этом без статистической разницы, что указывает на однородность двух сравниваемых групп. Аналогичный анализ выполнен через 14 дней, данные представлены на рисунке.

Частота случаев перивентрикулярного отека по данным нейросонографии у недоношенных детей

Установлено, что в 1-й группе после завершения МА с применением сухой иммерсии частота случаев перивентрикулярного отека по результатам нейросонографии достоверно в 2,2 раза снизилась ($p_{\text{Кохрейна} - \text{Мантеля} - \text{Ханцеля}} < 0,001$).

Проведена сравнительная оценка частоты синдрома повышенной нервно-рефлекторной возбудимости (СПНРВ) у недоношенных детей в постконцептуальном возрасте (ПКВ) 3 мес. (табл. 2).

Таблица 2

Частота нарушений сна у недоношенных детей при медицинской абилитации с использованием и без использования сухой иммерсии в неонатальном периоде

Группа	СПНРВ	Отсутствие СПНРВ	Всего
1-я	31 (46,3 %)	36 (53,7 %)	67 (100,0 %)
2-я	104 (71,7 %)	41 (28,3 %)	145 (68,4 %)
Всего	137 (100,0 %)	52 (100,0 %)	212 (100,0 %)

Выявлено, что в когорте недоношенных детей в 160 (64,6 %) случаях в ПКВ 3 мес. отмечались синдромы повышенной возбудимости и нарушения сна, преимущественно связанные с засыпанием. Сравнение в группах выявило значимые различия с более низким показателем СПНРВ в 1-й группе — 19,4 % (31/67) после применения МА с сухой иммерсией по сравнению со 2-й группой. Интеграция в программу МА сухой иммерсии и ее применение в неонатальном периоде оказывает отсроченный эффект и почти в 3 раза увеличивает шансы на снижение нервно-рефлекторной возбудимости (ОШ = 2,95, 95 % ДИ (1,61; 5,37); р_{кохрейна — Мантеля — Ханцеля} = 0,0006).

Проанализированы исходы развития в 1-й и во 2-й группах с выявлением неврологических нарушений и случаев без неврологических нарушений в ПКВ 2 лет (табл. 3).

Таблица 3

Исходы развития недоношенных детей при медицинской абилитации с использованием и без использования сухой иммерсии в неонатальном периоде

Группа	Неврологические нарушения	Отсутствие неврологических нарушений	Всего
1-я	18 (26,9 %)	49 (73,1 %)	67 (100,0 %)
2-я	123 (84,8 %)	22 (15,2 %)	145 (100,0 %)
Всего	141 (66,5 %)	71 (33,5 %)	212 (100,0 %)

Выявлено, что дети 1-й группы, получавшие МА с включением сухой иммерсии, в 73,1% (49/67) случаев в возрасте 2 лет не имели неврологических нарушений по сравнению со 2-й группой (15,2%), которым МА проводили без сухой иммерсии.

Таким образом, комплексная МА с интеграцией в программу сухой иммерсии в неонатальном периоде в 15 раз повышает шансы на отсутствие неврологических нарушений в возрасте 2 лет (ОШ = 15,22, 95 % ДИ (7,52; 30,82); $p_{\text{Кохрейна} - \text{Мантеля} - \text{Ханцеля}} < 0,001$).

Воспроизведение эффектов микрогравитации в условиях комплексной МА и реабилитации с применением метода сухой иммерсии в неонатальном периоде способствует более быстрому исчезновению перивентрикулярного отека по результатам нейросонографии, оказывает долгосрочные эффекты на нейроразвитие с уменьшением нервно-рефлекторной возбудимости в первые месяцы жизни и благоприятным влиянием на исходы развития в возрасте 2 лет.

Литература

- 1. Новая парадигма абилитации недоношенных детей с перинатальной патологией персонализация терапевтических этапов: когортное исследование / А. А. Баранов, Л. С. Намазова-Баранова, И. А. Беляева [и др.] // Вопросы современной педиатрии. 2020. Т. 19, № 4. С. 256—267.
- 2. Preventing Brain Injury in the Preterm Infant-Current Controversies and Potential Therapies / N. Yates, A. J. Gunn, L. Bennet [et al.] // International Journal of Molecular Sciences. 2021. Vol. 22 (4). DOI: 10.3390/ijms22041671.
- 3. Метод медицинской профилактики неврологических нарушений у недоношенных детей : инструкция по применению : утв. приказом М-ва здравоохранения Респ. Беларусь от 26 марта 2024 г. № 116-1123. Минск, 2024. 8 с.
- 4. Moreira, R. S. Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review / R. S. Moreira, L. C. Magalhaes, C. R. Alves // Journal de Pediatria (Rio J). -2014. -Vol. 90. -P. 119-134.
- 5. Adverse and protective influences of adenosine on the newborn and embryo: implications for preterm white matter injury and embryo protection / S. A. Rivkees, C. C. Wendler // Pediatric Research. 2011. Vol. 69, No. 4. P. 271 278.
- 6. Волянюк, Е. В. Комплексная реабилитация недоношенных детей на первом году жизни / Е. В. Волянюк, А. И. Сафина // Вестник современной клинической медицины. 2013. Т. 6, вып. 6. С. 59—62.
- 7. Фатыхова, Н. Р. Неврологические проблемы детей, рожденных с экстремально низкой массой тела / Н. Р. Фатыхова, В. Ф. Прусаков // Практическая медицина. 2010. № 7 (46). C.86-89.
- 8. Жевнеронок, И. В. Исходы развития недоношенных детей в раннем возрасте / И. В. Жевнеронок., В. Б. Смычек // Детская реабилитация. 2023. Т. 5, № 1. С. 8—16.
- 9. Comparison of morbidity and mortality of very low birth weight infants in a Central Hospital in Johannesburg between 2006/2007 and 2013 / D. E. Ballot, T. Chirwa, T. Ramdin [et al.] // BMC Pediatrics. 2015. Vol. 15. DOI: 10.1186/s12887-015-0337-4.
- 10. Блинов, Д. В. Перинатальное поражение мозга: актуальные вопросы эпидемиологии и подходы к классификации / Д. В. Блинов // Акушерство, гинекология и репродукция. 2016. Т. 10, № 4. С. 84—93.
- 11. Григорьев, А. И. Сердечно-сосудистая система человека в условиях космического полета / А. И. Григорьев, В. М. Баранов // Вестник Российской академии медицинских наук. 2003. Т. 12. С. 41—45.
- 12. Матюшев, Т. В. Имитационное моделирование механизмов регуляции гемодинамики в разных условиях. Ч. II. Расчетные данные гемодинамических показателей сосудов головного мозга и голени человека при постуральных воздействиях под углами +600 и −600 от горизонтали / Т. В. Матюшев, Р. А. Вартбаранов, С. П. Рыженков // Клиническая физиология кровообращения. — 2011. - № 2. - С. 72-78.
- 13. Фомина, Г. А. Механизмы изменений гемодинамики человека в условиях микрогравитации и прогноз послеполетной ортостатической устойчивости / Г. А. Фомина, А. Р. Котовская, В. И. Почуев, А. Ф. Жернавков // Физиология человека. 2008. Т. 34, № 3. С. 92—97.
- 14. Донина, Ж. А. Дыхание и гемодинамика при моделировании физиологических эффектов невесомости / Ж. А. Донина, В. М. Баранов, Н. П. Александрова [и др.]. Спб. : Наука, 2013. 182 с.
- 15. Донина, Ж. А. Межсистемные взаимоотношения дыхания и кровообращения (обзор) // Физиология человека. 2011. Т. 37, № 2. С. 117—128.

- 16. Беляева, И. А. Немедикаментозная абилитация детей с перинатальными поражениями нервной системы / И. А. Беляева, Е. П. Бомбардирова, Е. И. Токовая [и др.] // Вопросы современной педиатрии. 2017. Т. 16, № 5. С. 383—391.
- 17. Волянюк, Е. В. Комплексная реабилитация недоношенных детей на первом году жизни / Е. В. Волянюк, А. И. Сафина / Вестник современной клинической медицины. 2013. Т. 6, вып.6. С. 59—62.
- 18. Яцык, Г. В. Выхаживание и ранняя реабилитация детей / Г. В. Яцык, Е. П. Бомбардирова, О. В. Тресорукова // Лечащий врач. 2007. № 7. С. 23—27.
- 19. Sweeney, J. K. Neonatal hydrotherapy: an adjunct to developmental intervention in an intensive care nursery setting / J. K. Sweeney // Physical & Occupational Therapy In Pediatrics. 1983. Vol. 3, $N_{\rm P}$ 1. P. 39—52.
- 20. Vignochi, C. Efeitos da fisioterapia aquatica na dor e no estado de sono e vigilia de recem-nascidos pre-termo estaveis internados em unidade de terapia intensiva neonatal // C. Vignochi, P. P. Teixeira, S. Nader // Revista Brasileira de Fisioterapia. 2010. Vol. 14, N2 3. P. 214—220.

Контактная информация:

Жевнеронок Ирина Владимировна — к. м. н., доцент, зав. 2-й кафедрой детских болезней БГМУ, главный внештатный специалист по наследственным нервно-мышечным заболеваниям у детей Министерства здравоохранения Республики Беларусь.

Белорусский государственный медицинский университет.

Пр. Дзержинского, 83, 220083, г. Минск.

Сл. тел. + 375 17 374-89-30.

Участие авторов:

Концепция и дизайн исследования: И. В. Ж.

Сбор информации и обработка материала: И. В. Ж.

Выполнение нейросонографии: О. В. Ш.

Написание текста: И. В. Ж. Редактирование: Л. В. Ш.

Конфликт интересов отсутствует.

Поступила 07.03.2025 Принята к печати 10.03.2025