Определение цитокератина-18 и гранзима Б в моче: скрининговый метод диагностики хронических заболеваний почек у детей

¹О. А. Кондратенко, ²А. П. Мириленко, ³И. А. Козыро

¹10-я городская детская клиническая поликлиника, Минск, Беларусь ²Белорусский государственный аграрный технический университет, Минск, Беларусь ³Белорусский государственный медицинский университет, Минск, Беларусь

Цель исследования. Оценить возможности определения молекул апоптоза и эндотелиальной дисфункции в моче в качестве показателей для скрининга хронических заболеваний почек у детей.

Материал и методы. Обследован 141 пациент с хроническими заболеваниями почек. В группу сравнения вошли условно здоровые дети (n = 48) без признаков поражения почек и аутоиммунного процесса. Количественное определение уровня гранзима Б, цитокератина-18, молекулы межклеточной адгезии-1 (ICAM-1) проводили методом иммуноферментного анализа.

Результаты. Концентрация гранзима \mathcal{E} в моче 0,021 и выше свидетельствует о наличии у пациента хронического заболевания почек. Диагностическая точность этого теста по данным ROC-анализа составила 87,0 % (95 % ДИ (69,0—100,0), чувствительность (Se) теста — 90,5 %, специфичность (Sp) — 93,0 %). Уровень цитокератина-18 в моче 0,036 и выше также свидетельствует о наличии хронической нефропатии (диагностическая точность — 94,9 % (95 % ДИ (89,4—100,0), Se — 90,0 %, Sp — 91,3 %). В случае теста с ICAM-1 о наличии хронического заболевания почек можно говорить, если значение этого маркера в моче меньше 9,8 (диагностическая точность по данным ROC-анализа — 97,4 % (95 % ДИ (93,3—100,0), Se — 90,0 %, Sp — 97,6 %). В результате сравнительной оценки клинической полезности наиболее перспективным оказалось применение теста с определением цитокератина-18 и гранзима \mathcal{E} в моче.

Заключение. При проведении двухступенчатого скрининга с последовательными тестами определения гранзима Б и цитокератина-18 в моче в популяции детей, содержащей 0,275 % (1 на 364) пациентов с хроническими заболеваниями почек, вероятность наличия хронической нефропатии у пациента с двойным положительным тестом составит 26,94 %.

Ключевые слова: цитокератин-18, гранзим Б, ICAM-1, хронические заболевания почек, дети, гломерулопатии.

Objective. To evaluate the possibilities of determining molecules of apoptosis and endothelial dysfunction in urine as indicators for screening chronic kidney diseases in children.

Materials and methods. 141 patients with chronic kidney diseases were examined. The comparison group included conditionally healthy children (n = 48) without signs of kidney damage and autoimmune process. Quantitative determination of granzyme B, cytokeratin-18, and intercellular adhesion molecule-1 (ICAM-1) was performed by enzyme immunoassay.

Results. The concentration of granzyme B in urine is 0.021 or higher, indicating that the patient has chronic kidney disease. The diagnostic accuracy of this test according to the ROC analysis was 87.0 % (95 % CI (69.0—100.0), sensitivity (Se) of the test was 90.5 %, specificity (Sp) was 93.0 %). The level of cytokeratin-18 in urine of 0.036 and higher also indicates the presence of chronic nephropathy (diagnostic accuracy — 94.9 % (95 % (CI 89.4—100.0), Se — 90.0 %, Sp — 91.3 %). In the case of the ICAM-1 test, the presence of chronic kidney disease can be indicated if the value of this marker in urine is less than 9.8 (diagnostic accuracy according to ROC analysis is 97.4 % (95 % (CI (93.3—100.0); Se — 90.0 %, Sp — 97.6 %). As a result of a comparative assessment of clinical usefulness, the use of a test with the determination of cytokeratin-18 and granzyme B in urine turned out to be the most promising.

Conclusion. When conducting a two-stage screening with sequential tests for the determination of granzyme B and cytokeratin-18 in urine in a population of children containing 0.275 % (1 in 364) of patients with chronic kidney disease, the probability of chronic nephropathy in a patient with a double positive test will be 26.94 %.

Key words: cytokeratin-18, granzyme B, ICAM-1, chronic kidney disease, children, glomerulopathy.

HEALTHCARE. 2025; 5: 12-18

DETERMINATION OF CYTOKERATIN-18 AND GRANZYME B IN URINE: SCREENING METHOD FOR THE DIAGNOSIS OF CHRONIC KIDNEY DISEASES IN CHILDREN

O. Kondratenko, A. Mirilenko, I. Kazyra

Хроническую болезнь почек (ХБП) определяют как стойкое, длительное повреждение почечной паренхимы, приводящее к постепенному ухудшению функции почек, которое может прогрессировать до терминальной стадии почечной недостаточности (ТПН) [1]. Согласно ежегодному отчету Системы данных о заболеваниях почек США за 2017 год, основными причинами ХБП у детей остаются врожденные аномалии почек и мочевыводящих путей (22 %), первичные гломерулярные болезни (21,8 %), кистозные/наследственные/врожденные нарушения (12,5 %) и вторичные гломерулярные болезни (10,7 %). Наиболее распространенными диагнозами, связанными с ХБП, были фокальный сегментарный гломерулосклероз (11,6 %), гипоплазия/дисплазия почек (10 %), врожденные обструктивные уропатии (9,7 %) и системная красная волчанка (6,3 %). Такое распределение сильно отличается от ХБП у взрослых, которая в развитых странах чаще всего связана с сахарным диабетом или гипертонией [2].

Материал и методы

Проведено одномоментное поперечное исследование, в которое был включен 141 пациент с хроническими заболеваниями почек. Медиана (Ме) возраста пациентов составила 7 [9—16] лет. Обследованные дети были распределены по группам: 1-я группа — с первичными иммуноопосредованными гломерулопатиями (n = 32); 2-я группа — с вторичными иммуноопосредованными гломерулопатиями (n = 41); 3-я группа — с неиммуноопосредованными гломерулопатиями (n = 33); 4-я группа — с негломерулярными хроническими заболеваниями почек (n = 35). Все дети с гломерулопатиями имели морфологически подтвержденный диагноз. Группу сравнения (5-я группа) составили 48 детей без признаков поражения почек, наличия аутоиммунного процесса и инфекционных заболеваний. Работа проводилась на базе педиатрического отделения № 1 (для нефрологических больных) УЗ «2-я городская детская клиническая больница» г. Минска (далее — УЗ «2-я ГДКБ»), Республиканского центра детской нефрологии и заместительной почечной терапии. Детей в группу сравнения отбирали из числа пациентов педиатрического отделения № 2 (для кардиологических больных) УЗ «2-я ГДКБ».

Концентрацию молекулы межклеточной адгезии-1 (ICAM-1) определяли с помощью тест-систем от четырех производителей: sICAM-1/CD54 ELISA Kit (EH0161, FineTest, Китай), sICAM-1/CD54 ELISA Kit (E-EL-H0135, Elabscience, США); Human Soluble Intercellular Adhesion Molecule 1 Elisa Kit (E0263Hu, BT LAB, Китай), Intercellular Adhesion Molecule 1 (ICAM1) (SEA548Hu, Cloud-Clone Corp., США).

Определение уровня цитокератина-18 проводили с использованием тест-систем Cytokeratin 18 ELISA Kit (E-EL-H2072, Elabscience, США), Keratin 18 (SEB231Hu, Cloud-Clone Corp., США), Cytokeratin 18 ELISA Kit (EH2820, FineTest, Китай), Human cytokeratin 18 ELISA Kit (E1715Hu, BT LAB, Китай).

Уровень гранзима Б определяли с помощью тест-систем Granzyme B ELISA Kit (E-EL-H1617, Elabscience, США), Granzyme B (78E96FF66B, Cloud-Clone Corp., США), Human GzmB (Granzyme B) ELISA Kit (EH0157, FineTest, Китай).

Методы исследования, реализуемые с использованием наборов реагентов, имели различную чувствительность, поэтому полученные результаты подвергали обработке с нормированием пределов измерений на 10, статистическую оценку производили в баллах. Учет реакции осуществляли на фотометре универсальном Ф300ТП (ОАО «Витязь», Беларусь), спектрометре Sunrise Magellan V 7.1 (Тесап, Австрия), длина волны измерения — 450 нм. Статистическую обработку полученных данных проводили с применением стандартного пакета Statistica 10.0, IBM SPSS Statistics 29.0.2.0, программы Microsoft Exel.

Для осуществления внешней валидизации с помощью сервиса рандомизации (https://www.sealedenvelope.com/simple-randomiser/v1/lists; дата обращения: 19 декабря 2024 г.) были сформированы исследуемая группа и группа контроля с соотношением пациентов 2:1. В исследуемую группу вошли 126 пациентов, из них хроническое заболевание почек имели 94 ребенка, условно здоровыми были 32 ребенка. Группу контроля составили 63 пациента, из которых 47 имели хроническое заболевание почек, а 16 были условно здоровыми.

Результаты и обсуждение

В настоящий момент при получении патологических изменений в общем анализе мочи (ОАМ), для того чтобы выявить хроническое заболевание почек, нужно выполнить множество различных диагностических тестов, которые требуют существенных материальных и профессиональных ресурсов. Также требуется большое количество времени на проведение диагностического поиска. Поэтому поиск неинвазивных, дешевых и быстрых методов диагностики хронических нефропатий остро стоит перед исследователями.

Молекулы апоптоза и эндотелиальной дисфункции обозначили себя в качестве маркеров многих патологических процессов. В частности, повышение уровня цитокератина-18 в моче было обнаружено у пациентов с острым почечным повреждением и ХБП вследствие различных типов почечных заболеваний [3]. Гранзим Б повышается в сыворотке крови пациентов с системной красной волчанкой и коррелирует с показателями плохого прогноза при люпус-нефрите [4]. ICAM-1 экспрессируется эндотелиальными клетками клубочков и обеспечивает инфильтрацию клубочков лейкоцитами. Миграция лейкоцитов и иммунных комплексов в клубочки в значительной степени ответственны за инициирование и прогрессирование гломерулонефрита [5].

На первом этапе нами была изучена перспективность применения молекул апоптоза и эндотелиальной дисфункции для диагностики хронических заболеваний почек. Для этого, используя полученные результаты определения каждого из интересуемых маркеров у пациентов исследуемой группы, были разработаны математические модели, которые в дальнейшем проверяли на группе контроля. Таким образом осуществлялась внешняя валидизация модели. Так как перед нами стояла задача предложить максимально неинвазивный и быстрый способ диагностики хронических нефропатий, ориентированный на скрининг, то рассматривались только монофакторные варианты и только мочевые тесты. Анализ полученных ранее результатов определения молекул апоптоза и эндотелиальной дисфункции в моче проводили с помощью логистической регрессии. Самые высокие диагностические характеристики оказались у гранзима Б, цитокератина-18 и ICAM-1.

По данным ROC-анализа, диагностическая точность математической модели наличия заболевания на основании определения гранзима Б в моче составила 90,5 % (95 % ДИ (80,4—100,0). Разделительной вероятности 0,31 соответствуют значения чувствительности

(Se) 94,4 % и специфичности (Sp) 90,9 %, что для нашей клинической задачи следует считать удовлетворительным. Результаты ROC-анализа представлены на рис. 1.

Валидизация на группе контроля подтвердила полученные результаты: диагностическая точность, по данным ROC-анализа, составила 87,0 % (95 % (ДИ 69,0—100,0), Se — 90,5 %, Sp — 93,0 %). Разделительная вероятность 0,32 соответствует значению аргумента логистической функции X = 0,3167 и значению гранзима Б 0,021. Следовательно, концентрация гранзима Б в моче 0,021 и выше свидетельствует о наличии у пациента хронического заболевания почек. Данные ROC-анализа валидизации на группе контроля диагностического теста с определением гранзима Б в моче представлены на рис. 2.

Диагностическая точность математической модели наличия хронической нефропатии на основании определения цитокератина-18 в моче составила 85,9 % (95 % ДИ (78,6—93,2)). Разделительной вероятности 0,39 соответствовали Se 82,4 % и Sp 79,5 %.

Приведенные результаты также были подтверждены при внешней валидизации на группе контроля. Диагностическая точность составила 94,9% (95% ДИ (89,4-100,0), Se -90,0%, Sp -91,3%). Эти диагностические характеристики получены для разделительной вероятности 0,33, которая соответствует значению цитокератина-180,036. Таким образом, при уровне цитокератина-180,036 и выше можно говорить о наличии хронической нефропатии.

Таким же образом была разработана математическая модель для оценки риска наличия заболевания для ICAM-1 в моче. Ее диагностическая точность составила 89,2% (95% ДИ (77,6—100,0), Se — 87,5%, Sp — 91,6%). Эти диагностические характеристики соответствуют разделительной вероятности 0,09. Результаты ROC-анализа представлены на рис. 3.

Проведение внешней валидизации данной модели также подтвердило полученные результаты: диагностическая точность, по данным ROC-анализа, составила 97,4 % (95 % ДИ (93,3-100,0), Se -90,0 %, Sp -97,6 %). Разделительная вероятность 0,58 соответствует значению ICAM-1 9,8. Интересно, что в случае теста с ICAM-1 о наличии хронического заболевания почек можно говорить при значении этого маркера в моче меньше 9,8.

Полученные на основании традиционного ROC-анализа результаты обладают соизмеримой эффективностью, поэтому для разработки алгоритма скрининга хронических заболеваний почек мы посчитали целесообразным провести дополнительный анализ тестов

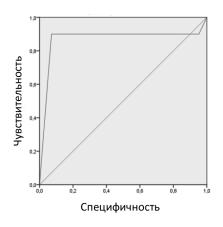


Рис. 1. Оценка математической модели на основании определения гранзима Б в моче

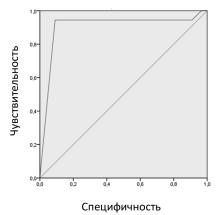


Рис. 2. ROC-анализ внешней валидизации диагностического теста с определением гранзима Б в моче

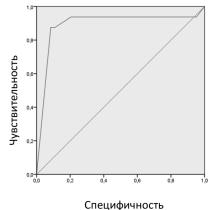


Рис. 3. Оценка математической модели на основании определения ICAM-1 в моче

на определение исследуемых маркеров с использованием подхода по оценке так называемой чистой выгоды, или чистой пользы.

Модели прогнозирования обычно оцениваются с точки зрения их точности: распознавания (площадь под кривой (AUC) или индекс соответствия) и калибровки (график соотношения прогнозируемого и наблюдаемого риска). Анализ кривой принятия решений был разработан как метод определения того, принесет ли использование модели прогнозирования в клинике для обоснования принятия решений больше пользы, чем вреда [6]. Чистая выгода (Net Benefit) — это метрика, используемая в оценке чистой выгоды (Decision Curve Analysis, DCA), которая позволяет количественно оценить клиническую полезность диагностической модели. Она учитывает как выгоды от правильных решений, так и издержки от неправильных, что делает ее полезной для оценки моделей в клинической практике [6]. В отличие от традиционных метрик, таких как точность, чувствительность и специфичность, DCA дает более комплексное понимание клинической полезности моделей, учитывая последствия как правильных, так и неправильных решений [7].

Нами была рассчитана функция чистой выгоды для диагностических тестов на основе определения гранзима Б, цитокератина-18 и ICAM-1 в моче. На рис. 4 представлено графическое отображение результатов анализа кривой принятия решений, полученное с использованием языка программирования Python.

В результате сравнительной оценки клинической полезности разработанных моделей можно сделать вывод, что наиболее перспективным является применение теста с опреде-

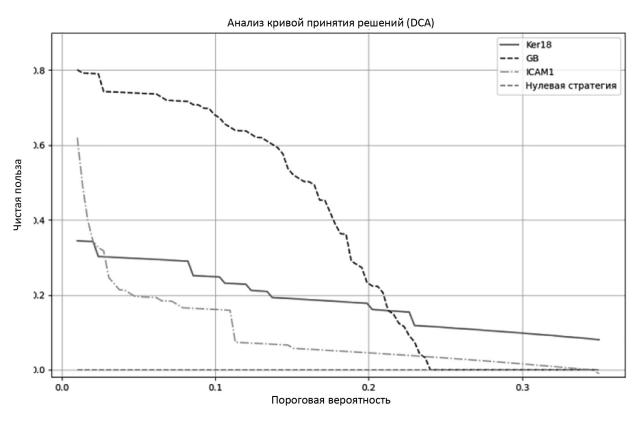


Рис. 4. Сравнительная оценка клинической полезности разработанных моделей

лением цитокератина-18, у которого кривая принятия решений равномерна, а в диапазоне пороговой вероятности больше 0,22 функция чистой пользы проходит выше, чем у двух других молекул. Вторым перспективным вариантом является диагностический тест на основе определения гранзима Б в моче. В то же время молекула ICAM-1 имеет низкий уровень функции пользы практически на всем диапазоне. Таким образом, для дальнейшей разработки скрининга наличия хронического заболевания почек у детей были выбраны маркеры апоптоза цитокератин-18 и гранзим Б.

В качестве целевой аудитории для применения скрининга наличия хронического заболевания почек были определены дети, которым по каким-либо иным причинам выполняется ОАМ с получением патологических изменений в результатах. Была оценена распространенность хронических заболеваний почек у детей, которым выполняли ОАМ по любым причинам, она составила 0,275 %. Далее была рассчитана прогностическая ценность положительного результата (positive predictive value, PPV), по существу являющаяся вероятностью наличия заболевания при положительном тесте у участника целевой аудитории, вычисленной с учетом распространенности:

$$PPV = (Se \times P) / (Se \times P + (1 - Sp) \times (1 - P)),$$

где Р — распространенность.

Таким образом, при определении гранзима Б в моче у пациентов, имеющих патологические изменения в ОАМ, вероятность наличия хронического заболевания почек равна 3,44 %. Вероятность заболевания при аналогичном тесте с использованием цитокератина-18 —2,77 %.

Было оценено отношение правдоподобия положительного результата (positive likelihood ratio, LR+). Этот анализ показывает, насколько вырастут шансы того, что пациент, имеющий положительный тест, действительно болен:

$$LR + = Se / ((1 - Sp)).$$

Для выбранных нами маркеров отношение правдоподобия положительного результата составило: гранзим Б-12,93; цитокератин-18-10,34. Предтестовый шанс наличия хронического заболевания почек у пациента с патологическими изменениями в ОАМ был равен 0,2%, а после выполнения предложенных нами тестов он увеличился в среднем в 10 раз.

Улучшить эффективность скрининга можно путем использования двухступенчатого теста (two-step screening), то есть сразу двух тестов. В таком подходе обычно первый тест является более простым и менее затратным, а второй тест проводят только у тех пациентов, у которых результаты первого теста были положительными или подозрительными. Тестирование может быть последовательным или параллельным. При последовательном тестировании второй тест проводят только у тех, у кого первый тест дал положительный результат. Это помогает снизить количество ложноположительных результатов. При параллельном тестировании оба теста проводят одновременно, и результаты интерпретируются вместе. Это может повысить чувствительность скрининга.

Расчет характеристик двухступенчатого теста осуществляют с использованием показателей отношения правдоподобия. По шансам до теста вычисляют шансы после проведения теста:

В нашем случае $PretestOdds_1 = P/(1-P) = 0,00276$, где P (prevalence) — распространенность. Тогда $PosttestOdds_1 = 0,03566$ (шанс наличия хронического заболевания почек

у пациента после проведения первого теста), а PosttestOdds $_2$ = 0,3687 (шанс наличия хронического заболевания почек у пациента после проведения второго теста). Для привычности восприятия шанс наличия хронического заболевания почек представили в виде вероятности: р (гранзим Б/цитокератин-18) = 26,94 % (вероятность наличия хронического заболевания почек в случае двойного теста).

Таким образом, при проведении двухступенчатого скрининга с последовательными тестами определения гранзима Б и цитокератина-18 в моче в популяции детей, содержащей 0,275 % (1 на 364) пациентов с хроническими заболеваниями почек, вероятность наличия хронической нефропатии у пациента с двойным положительным тестом составит 26,94 %.

Литература

- 1. Akchurin, O. Chronic kidney disease and dietary measures to improve outcomes / O. Akchurin // Pediatric Clinics of North America. 2019. Vol. 66, N 1. P. 247—267.
- 2. ESRD among Children, Adolescents, and Young Adult. URL: https://www.niddk.nih.gov/-/media/Files/USRDS/2018-Previous-ADR/Volume-2/Chapter/v2_c07_esrd_pediatric_18_usrds.pdf (date of access: 01.03.2025).
- 3. Serum and urine periostin and cytokeratin-18 in children with congenital obstructive nephropathy / A. Turczyn, G. Krzemien, E. Gorska [et al.] // Central European Journal of Immunology. 2022. Vol. 47. P. 63—72.
- 4. Systemic and local granzyme B levels are associated with disease activity, kidney damage and interferon signature in systemic lupus erythematosus / H. M. Kok, L. L. van den Hoogen, J. A. G. van Roon [et al.] // Rheumatology. 2017. Vol. 56. P. 2129—2134.
- 5. Sung, S. S. Co-immunostaining of ICAM-1, ICAM-2, and CD31 in Mouse Kidney Glomeruli / S. S. Sung // Bio Protocol. 2020. Vol. 13, № 10. DOI: 10.21769/BioProtoc.3663.
- 6. Vickers, A. J. Decision curve analysis to evaluate the clinical benefit of prediction models / A. J. Vickers, F. Holland // The Spine Journal. 2021. Vol. 21, N_2 5. P. 2129—2134.
- 7. Reporting and interpreting decision curve analysis : a guide for investigators / B. V. Calster, L. Wynants, J. F. M. Verbeek [et al.] // Europian Urology. 2018. Vol. 74, N_2 6. P. 796—804.

Контактная информация:

Кондратенко Оксана Александровна — заместитель главного врача по медицинской экспертизе и реабилитации.

10-я городская детская клиническая поликлиника.

Ул. Шишкина, 24, 220118, г. Минск.

Сл. тел.+375 17 301-86-99.

Участие авторов:

Концепция и дизайн исследования: О. А. К., И. А. К. Сбор информации и обработка материала: О. А. К. Статистическая обработка данных: О. А. К., А. П. М.

Написание текста: О. А. К. Редактирование: И. А. К.

Конфликт интересов отсутствует.

Поступила 25.03.2025 Принята к печати 09.04.2025