- 7. Interventions for sensory impairment in the upper limb after stroke / S. Doyle // Cochrane Database Syst Rev. -2010. N₂6. P. 172.
- 8. Langhorne, P. Motor recovery after stroke: a systematic review / P. Langhorne, F. Coupar, A. Pollock // Lancet Neurol. 2009. Vol. 8(8). P. 741-54.
- 9. Task-specific training: evidence for and translation to clinical practice / IJ. Hubbard [et al] // Occup Ther Int. -2009. Vol. 16(3,4). P. 175-89.
- 10. 11. SENSory re-learning of the UPPer limb (SENSUPP) after stroke: development and description of a novel interven-tion using the TIDieR checklist / H. Carlsson [et al] // Trials. 2021. №22. P. 430.
- 11. Kitago, T. Motor learning principles for neurorehabilitation / T. Kitago, JW. Krakauer // Handb Clin Neurol. 2013. Vol. 110. P. 93-103.

Метод БОС в реабилитации двигательных нарушений верхней конечности после мозгового инсульта

Сикорская И.С., Грицевич Н.М.

УО «Белорусский государственный медицинский университет», ГУ «Республиканская клиническая больница медицинской реабилитации», г. Минск, Республика Беларусь

Введение. Нарушение двигательной функции в кисти является одной из наиболее частых причин стойкой утраты произвольных движений, невозможности самообслуживания, снижения качества жизни и социальной дезадаптации. Дефицит тонких двигательных навыков имеет такое же важное значение для человека, как и нарушение глобальных движений.

Инновационные технологии виртуальной реальности (далее – BP) с системой биологической обратной связи (далее – БОС) являются одним из перспективных направлений в реабилитации и позволяют с помощью автоматизированных, устройств и компьютерных стратегий создать индивидуальную искусственную среду, где можно осуществлять разнообразные программы восстановления нарушенных функций [1-3].

Существует три основных метода восстановления двигательной активности в руках с использованием сенсорных перчаток [1,4]:

- Пассивная разработка суставов с использованием роботизированного устройства. Продолжительные анатомически правильные движения тренажеров безболезненно разрабатывают суставы в соответствии с биомеханикой движения каждого сустава. Поддержание регулярной подвижности в суставах помогает избежать развития осложнений контрактур, атрофии мышц и прочих патологий. Современные тренажеры позволяют восстанавливать моторику всей конечности и каждого отдельного пальца.
- Активная тренировка с использованием сенсорной перчатки. Данный метод подразумевает использование компьютера со специализированным ПО. В процессе терапии пациент управляет компьютерной игрой при помощи всей руки или отдельных пальцев. При этом каждая игра

направлена на многоразовую отработку определенного двигательного навыка. Данные тренажеры также позволяют проводить тренировки в формате эрготерапии, чтобы научить пациента взаимодействовать с реальным миром — захватывать и перемещать предметы различной формы под контролем реабилитационной системы.

В отличие от традиционной эрготерапии, при использовании компьютеризированной системы специалист получает аналитические данные о силе захвата, максимальных углах сгибания и других показателях после каждого занятия. Кроме того, дополненная реальность делает лечение менее рутинным и утомительным.

— Активно-пассивная тренировка. Данный метод позволяет задействовать ресурсы пациента, помогая постепенно возвращать утраченные навыки. К примеру, во время зеркальной терапии больной надевает специальные перчатки на обе руки и выполняет движения более здоровой рукой. Сенсорная перчатка считывает эти движения и передает сигнал роботизированной перчатке, зафиксированной на паретичной конечности. Таким образом, синхронизируются движения в обеих руках, что активирует двустороннее взаимодействие мозга.

Цель. Изучение возможности повышения эффективности физической реабилитации пациентов в остром периоде ишемического инсульта (далее – ИИ) путем включения в программу активной тренировки с использованием сенсорной перчатки.

Материалы и методы исследования. Под нашим наблюдением находились 28 пациентов в возрасте 51-70 лет (средний возраст 61.9 ± 3.8 года) в остром периоде ишемического инсульта, в том числе 11 (40%) женщины и 13 (60%) мужчины. Ишемический инсульт в каротидном бассейне был зарегистрирован у 78% пациентов (в бассейне левой средней мозговой артерии – у 47%, правой – у 31%), в вертебробазилярном бассейне – у 22%.

Для объективизации выраженности имеющегося неврологического дефицита использовались общепринятые международные шкалы и опросники: для оценки функции верхней конечности – тест ARAT, модифицированная шкала Frenchay (далее – FAT), шкала MAS; для анализа степени функциональной независимости – шкалы Бартел и FIM.

Комплексная реабилитация всех пациентов включала эрготерапию, лечебную физкультуру, лечебный массаж.

Программа физической реабилитации у пациентов основной группы (18 пациентов) дополнительно включала тренинги с использованием сенсорной перчатки «Аника» с БОС.

Инновационный реабилитационный тренажер с системой БОС «Аника» состоит из сенсорной перчатки с датчиками положения и скорости, регистрирующими разнообразные параметры движения пальцев, и программного обеспечения с набором игровых стратегий различного уровня сложности в условиях ВР. Это позволяет формировать определенные

двигательные паттерны и адаптировать программу реабилитации в соответствии с реальными возможностями каждого конкретного пациента.

Перед началом тренировок проводится диагностика для оценки возможностей пациента, подбора оптимальной нагрузки и отслеживания результатов терапии. Изучается объем пассивных и активных движений пальцев, запястья и предплечья. Пассивный анализ позволяет определить максимальные углы сгибания суставов; во время активного анализа пациент самостоятельно двигает кистью.

Результаты анализа позволяют определить следующие параметры:

- минимальные и максимальные углы,
- активный диапазон движений,
- пассивный диапазон движений,
- дефицит сжатия,
- дефицит разжатия.

Программа анализирует данную информацию и выявляет возможности пациента. Итоговые результаты исследования сохраняются.

На основе полученных данных предлагаются упражнения разной сложности. Процесс восстановления моторики рук построен в форме игры. Исследования показывают [4], что игра является одним из самых действенных способов для мотивации на многократное повторение движений в суставах. В каждой игре у пациента есть цель, достигая которую, он отрабатывает изолированные или функциональные движения.

Упражнения позволяют отрабатывать одновременно одно или два движения, а также захват предметов разной формы и размера:

- упражнения на одно движение: «Автогонки», «Волейбол»;
- упражнения на два движения (например, движение пальцев перемещает объект по вертикали, а второе движение в локте по горизонтали): «Бомбардир», «Пузыри», «Квадрат»;
- упражнения для тренировки захватов: «Собери предметы», «Пирамида», «Открути крышку», «Стакан», «Боулинг».

Пациент располагался перед компьютером, датчики закреплялись в зависимости от выбора одной или нескольких тренировочных зон. Инструктор назначал определенные упражнения и выбирал допустимые уровни сложности. После каждого занятия просматривали отчет о выполнении заданий по каждому из суставов, при этом пациент мог получать визуально обратную связь и видеть свои успехи. Занятия проводились ежедневно по 30 минут, 10 занятий 1 раз в день в течение 2 недель.

Результаты исследования. Проведенное исследование показало более значимое улучшение функционального статуса верхней конечности и целенаправленных высоко координированных движений в кисти у пациентов, перенесших ИИ, в программе реабилитации которых использовался тренажер с системой БОС «Аника».

У пациентов основной группы отмечался достоверно меньший

моторный дефицит, улучшение двигательного паттерна и отдельных параметров движения (скорости, объема, и диапазона) в верхней конечности, как и мелкой моторики кисти (скорости, ловкости, возможности осуществлять координированные двигательные акты) согласно большинству методов оценки функционального статуса исследуемых пациентов (таблица 1).

Таблица 1 – Оценка двигательной функции в верхней конечности и кисти

Шкала	Основная группа n=18		Контрольная группа n=10	
	до	после	до	после
шкала Frenchay	24,5	36,8	25,7	28,5
тест ARAT	30,5	38,8	31,2	35,4
шкала MAS подраздел «Н»	7	12	7	9

По степени двигательного дефицита в кисти по шкале ARAT было выявлено уменьшение степени пареза и переход части пациентов в подгруппу с более легким двигательным дефицитом.

Динамика двигательных нарушений в кисти по подразделам шкалы ARAT представлена в таблице 2.

Таблица 2 – Динамика двигательных нарушений в кисти по подразделам шкалы ARAT

Раздел шкалы	Основная группа n=18		Контрольная группа n=10	
	до	после	до	после
Общий балл	41	53	39,5	47,5
Шаровой захват	18	18	15,5	16,5
Цилиндрический захват	8	11	7,5	8
Щипковый захват	8	15	10	12
Крупные движения руки	7	8	6	7

Также у пациентов основной группы, программа физической реабилитации которых включала использование реабилитационного тренажера с системой БОС «Аника», отмечалось статистически значимое улучшение функциональной независимости и активности в повседневной жизни (таблица 3).

Таблица 3 — Оценка функциональной независимости пациентов в повседневной жизни

Шкала	Основная группа n=18		Контрольная группа n=10	
	до	после	до	после
индекс Бартел	63,2	79,6	64,1	70,2
шкала FIM	100,3	119,7	99,8	105,2

Повторная оценка уровня спастичности в отдельных сегментах по тесту Ашфорт подтвердила эффективность использования сенсорной

перчатки «Аника». Показатели мышечной силы увеличились на 2,6% (абсолютный прирост 0,5 кг) в контрольной, и на 7,6% (1,5 кг) – в основной группе.

Ни у одного из пациентов при использовании реабилитационной системы «Аника» не наблюдалось нежелательных или побочных явлений или обострения текущих заболеваний. Напротив, отмечалось улучшение психологического статуса и мотивации пациентов продолжать реабилитационные процедуры.

Выводы. Вовлечение в реабилитационный процесс структур кисти и верхней конечности в различных комбинациях способствует достоверному снижению постинсультного дефицита и увеличению объема движений, улучшая функциональные возможности кисти и верхней конечности: скорость, объем, диапазон и качество выполнения, ловкость и возможность осуществлять координированные двигательные акты. Применение в реабилитации пациентов, перенесших ИИ, реабилитационного тренажера с системой БОС «Аника» приводило к повышению мотивации пациентов, улучшению их повседневной активности и бытовой независимости.

Литература

- 1. Можейко, Е.Ю. Оптимизация подходов к восстановлению тонкой моторики кисти с использованием сенсорной перчатки и метода mcimt / Е.Ю. Можейко, С.В. Прокопенко, Г.В. Алексеевич // Журнал неврологии и психиатрии им. С.С. Корсакова. 2017. №10. Р. 101-105.
- 2. Восстановление двигательной функции верхних конечностей после инсульта / Е.В. Каерова [и др.] // Вестник восстановительной медицины. 2021. №20(1). P. 21-26.
- 3. Восстановительная неврология: Инновационные технологии в нейрореабилитации / П.Д. Бобров [и др.]. М.: Медицинское информационное агентство, 2016.-344 с.
- 4. Homebased hand rehabilitation with a robotic glove inhemiplegic patients after stroke: a pilot feasibility study / P. Bernocchi [et al.] // Topics in Stroke Rehabilitation. -2018. Voll. 25(2). P. 114-119.

Медицинская реабилитация и экспертиза в Республике Беларусь: вызовы, решения и научное сопровождение на новом этапе развития

Смычёк В.Б., Разуванов А.И., Зуева А.В.

РНПЦ медицинской экспертизы и реабилитации, г. Минск, Республика Беларусь

Инвалидность является одной из глобальных проблем современного мирового общества. Согласно данным Всемирной организации здравоохранения (далее – ВОЗ), более одного миллиарда человек в мире страдает инвалидностью, что составляет примерно 15% населения планеты. Рост числа

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Государственное учреждение «РЕСПУБЛИКАНСКИЙ НАУЧНО-ПРАКТИЧЕСКИЙ ЦЕНТР МЕДИЦИНСКОЙ ЭКСПЕРТИЗЫ И РЕАБИЛИТАЦИИ»

МЕДИКО-СОЦИАЛЬНАЯ ЭКСПЕРТИЗА И РЕАБИЛИТАЦИЯ

Сборник научных статей

Основан в 1999 году

Выпуск 27

Под общей редакцией заслуженного деятеля науки Республики Беларусь, доктора медицинских наук, профессора В. Б. Смычка

Минск «Колорград» 2025