УТИЛИЗАЦИЯ ФАРМАЦЕВТИЧЕСКИХ ОТХОДОВ НА ПРИМЕРЕ КЕТОРОЛАКА И ИБУПРОФЕНА

Харлап А.Ю. УО БГМУ, г. Минск, Беларусь

Введение. На сегодняшний день во всём мире остро обсуждается проблема утилизации лекарственных средств. Их остатки были обнаружены в компонентах окружающей среды во многих странах, в связи с этим растет озабоченность тем вредом, который они могут причинить здоровью людей и окружающей среде.

Материалы и методы. Для утилизации ибупрофена использовали серную кислоту при нагревании. Для нейтрализации кеторолака — реактив Фентона ($Fe^{2+} + H_2O_2$). Для установления структуры полученных соединений регистрировали спектр гигантского комбинационного рассеяния. Токсичность веществ определяли с помощью компьютерного моделирования Toxicity Assessment Software Tool (TEST). Смертельная пероральная доза использовалась как индикатор токсичности. Структура фермента COX-1 (PDB ID: 6Y3C) была взята из Protein Data Bank (PDB). Молекулярный докинг проводился на Docking Server.

Результаты и их обсуждение. При анализе спектров кеторолака и продуктов его утилизации было обнаружено увеличение пиков при 1080-1150 см⁻¹ и 2762, 2788 см⁻¹, которые принадлежат колебаниям связей О-Н и С-О соответственно. Это указывает на успешное протекание реакции гидроксилирования. При анализе токсичности кеторолака и продуктов гидроксилирования выявлено снижение показателя токсичности (3,24 против 3,30 моль/кг). Поскольку наша цель не только снизить токсичность, но и уменьшить фармакологическую активность, МЫ сравнили энергию связывания и константу ингибирования комплексов кеторолак/ $\text{ЦО}\Gamma^{-1}$ и продукт/ЦОГ-1. В результате реакции энергия связи снизилась (-6,13 против -7,28 ккал/моль), что говорит о снижении спонтанности образования комплекса вещество/ $\mathsf{UO}\Gamma^{-1}$. Мы также наблюдаем увеличение константы ингибирования (31,91 мкМ против 4,60 мкМ), что указывает на увеличение необходимой концентрации образования вещества ДЛЯ вещество/ $\mathsf{UO}\Gamma^{-1}$.

При анализе спектров ГКР продуктов детоксикации ибупрофена выявлено существенное уменьшение интенсивности пиков при 1025 см-1 и 2746 см⁻¹, принадлежащих колебаниям связей O-H И карбоксильной группы. Уменьшение интенсивности этих пиков свидетельствует об успешном протекании реакции декарбоксилирования и эффективности предложенного метода утилизации. При анализе токсичности исходного вещества ибупрофена и продуктов нейтрализации выявлено снижение показателя токсичности (1,71 против 2,51 моль/кг). Результаты связи и константы ингибирования энергии ибупрофен/COX⁻¹ и продукт/COX⁻¹ с использованием молекулярного докинга показали снижение энергии связи (-3,07 против -5,21 ккал/моль) и увеличение константа ингибирования (102,91 мкМ против 7,60 мкМ). В целом можно говорить об эффективности этого метода нейтрализации.

Выводы. Проведенные исследования доказывают возможность использования химического утилизации непригодных метода использования лекарств. Преимуществами этих методов являются дешевизна и доступность используемых реагентов, простота методов утилизации и образование метаболитов токсичностью. предсказуемых низкой Предлагаемые методы утилизации кеторолака и ибупрофена МОГУТ использоваться В качестве альтернативы существующим методам утилизации.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Рязанский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации

СБОРНИК ДОКЛАДОВ

VII Всероссийской научной конференции молодых специалистов, аспирантов, ординаторов

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В МЕДИЦИНЕ: ВЗГЛЯД МОЛОДОГО СПЕЦИАЛИСТА

Рязань, 07 октября 2021 г.