МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ОБЩЕЙ ХИМИИ

С. В. Ткачёв

ВВЕДЕНИЕ В ОРГАНИЧЕСКУЮ ХИМИЮ

Учебно-методическое пособие

Издание третье

Минск БГМУ 2008

УДК 547 (075.8) ББК 24.2 я 73 Т 48

Утверждено Научно-методическим советом института в качестве учебно-методического пособия 20.02.2008 г., протокол № 6

Рецензент проф. И. В. Романовский

Ткачёв, С. В.

Т 48 Введение в органическую химию : учеб.-метод. пособие / С. В. Ткачёв. 3-е изд. – Минск : БГМУ, 2008.-106 с.

ISBN 978-985-462-818-9.

Изложены начальные сведения по органической химии за курс средней школы. Для лучшего понимания материала приведены вопросы и упражнения, тестовый самоконтроль и задачи. Первое издание вышло в 2001 году.

Предназначено для иностранных учащихся подготовительных отделений, а также может быть полезным для абитуриентов, которые желают восстановить или усовершенствовать свои начальные знания по органической химии.

УДК 547 (075.8) ББК 24.2 я 73

1. Предмет органической химии

Органическая химия — это химия соединений углерода. Первые органические соединения были получены из веществ растительного и животного происхождения. Поэтому до середины XIX в. химики думали, что органические вещества образуются из неорганических только в живых организмах под влиянием «жизненной силы».

Однако в 1828 г. Ф. Велер впервые из неорганического вещества — циановокислого аммония — получил органическое вещество — мочевину:

$$NH_4CNO \xrightarrow{t^0} CO(NH_2)_2.$$

Позже в лаборатории были получены такие важные органические вещества как уксусная кислота и жиры. Поэтому к 1860 г. идея «жизненной силы» потеряла свое значение в химии.

В состав органических соединений помимо углерода и водорода могут входить кислород, азот, сера, фосфор и другие элементы.

Среди органических соединений различают природные (белки, углеводы, жиры, витамины) и синтетические (пластические массы, лекарственные препараты, красители).

Число органических соединений больше, чем неорганических. Известно несколько миллионов органических соединений и несколько сотен тысяч неорганических. Большее число органических соединений объясняется следующими причинами. Во-первых, атомы углерода легко соединяются друг с другом и образуют цепи — длинные и короткие (разветвленные и неразветвленные), различные циклы.

Атомы углерода могут быть соединены между собой и другими элементами одинарной, двойной и тройной связями. Во-вторых, многие другие элементы могут образовывать химические связи с атомами углерода.

Вопросы

- 1. Что такое органическая химия?
- 2. Назовите органические вещества, которые впервые были получены в лаборатории.
- 3. Какие элементы, кроме углерода и водорода, могут входить в состав органических веществ?
 - 4. Почему число органических соединений больше, чем неорганических?

2. Теория химического строения органических соединений А.М. Бутлерова. Изомерия

Теория химического строения органических соединений была предложена А.М. Бутлеровым в 60-х годах XIX в. К этому времени было известно, что углерод в своих соединениях четырехвалентен, а атомы углерода могут соединяться друг с другом с образованием цепей.

Основные положения теории

1. Атомы в молекулах соединены друг с другом в определенном порядке в соответствии с их валентностью

А.М. Бутлеров ввел понятие химическое строение вещества. Химическим строением он назвал порядок соединения атомов в молекуле и характер их связей. Каждое органическое соединение имеет определенное химическое строение, которое может быть изображено только одной структурной формулой. Например, порядок соединения атомов в молекулах этана C_2H_6 , этилена C_2H_4 и ацетилена C_2H_2 может быть выражен следующими структурными формулами:

или
$$CH_3 - CH_3$$
 $H_2C = CH_2$ $HC \equiv CH$

По структурной формуле можно предсказать физические и химические свойства вещества.

Химическое строение данного соединения может быть определено путем изучения его химических свойств и реакций его образования.

2. Свойства веществ зависят не только от качественного и количественного состава, но и от химического строения их молекул

Соединения, у которых одинаковые молекулярные формулы, но разный порядок соединения атомов в молекулах, называются изомерами. Например, C_2H_6O — молекулярная формула двух различных соединений, которые имеют следующие структурные формулы: $CH_3 - O - CH_3$ (I) и CH_3CH_2OH (II). Два соединения имеют одинаковое число атомов одних и тех же элементов, но эти элементы соединены между собой в различном порядке. Поэтому соединения

(I) и (II) являются изомерами и имеют различные физические и химические свойства. Диметиловый эфир (I) — легколетучее, довольно инертное соединение; этиловый спирт (II) — менее летучее, реакционноспособное соединение.

Структурные формулы показывают только порядок соединения атомов, но не расположение их в пространстве.

3. Атомы или группы атомов в молекуле оказывают друг на друга взаимное влияние

Например, атомы водорода в метане (CH_4) и метиловом спирте (CH_3OH) должны иметь одинаковые химические свойства. Но это не так. В молекуле метилового спирта (CH_3OH) только один атом водорода замещается на щелочной металл, а в молекуле метана ни один из атомов водорода не замещается на металл. Это объясняется влиянием на водород атома кислорода в молекуле спирта.

Известно, что бензол не реагирует с бромной водой, но реагирует с бромом в присутствии катализатора железа:

$$\begin{array}{c|c} & & & & \\ & & & \\ & + & Br_2 & \xrightarrow{F_e} & & \\ & & & \end{array} + HBr$$

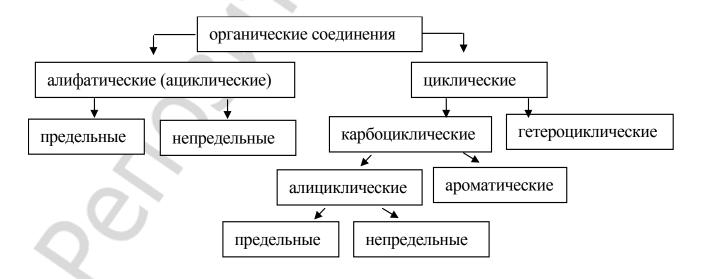
При приливании бромной воды (раствор брома в воде) к раствору фенола сразу образуется белый осадок трибромфенола:

OH OH Br
$$+ 3Br_2$$
 $+ 3HBr$ $+ 3HBr$

Строение бензола и фенола отличаются друг от друга только присутствием гидроксильной группы в молекуле фенола. Гидроксильная группа в молекуле фенола влияет на бензольное кольцо и поэтому атомы водорода легко замещаются в нем на атомы брома.

Вопросы и упражнения

1. Как соединяются атомы в молекулах друг с другом?

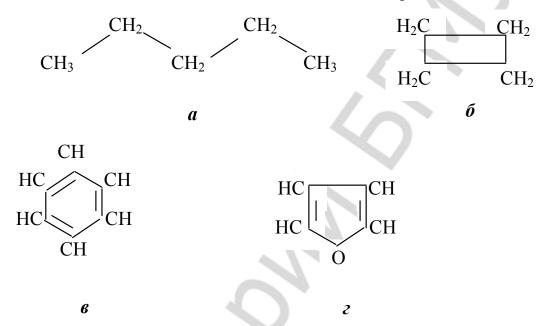

- 2. Что называется химическим строением вещества по А.М. Бутлерову?
- 3. Что такое структурная формула?
- 4. Что можно предсказать по структурной формуле вещества?
- 5. Как можно определить химическое строение данного соединения?
- 6. От чего зависят свойства веществ?
- 7. Что такое изомеры? Приведите примеры изомеров.
- 8. Приведите примеры взаимного влияния атомов или групп атомов в молекулах органических соединений.
 - 9. Одинаковы ли химические свойства у приведенных веществ?

3. Классификация органических соединений

Все органические соединения классифицируются по строению углеводородного радикала R (табл. 1) и по функциональным группам X (табл. 2).

Таблица 1

Классификация органических веществ по строению углеводородного радикала R



Молекулы алифатических (ациклических) соединений содержат неразветвленную или разветвленную углеродную цепь. Молекулы циклических соединений содержат кольца. Циклические соединения делятся на карбоциклические и гетероциклические. В карбоциклических соединениях кольца состоят

только из атомов углерода. В гетероциклических соединениях в кольцах, кроме атомов углерода, содержатся атомы других элементов.

К карбоциклическим соединениям относятся ароматические и алициклические соединения.

Ароматические соединения содержат бензольные или конденсированные бензольные кольца; алициклические соединения не содержат бензольных колец.

Рис. 1. Представители различных классов органических соединений: a — ациклическое (н-пентан); δ — алициклическое (циклобутан); ϵ — ароматическое (бензол); ϵ — гетероциклическое (фуран)

Таблица 2 Классификация органических веществ по функциональным группам X

X	Название класса	Общая формула (RX)
-F, -Cl, -Br, -I	Галогенопроизводные	R - Cl (-F, -Br, -I)
Гидроксил – ОН	Спирты	R – OH
	Фенолы	Ar – OH
Карбонил – С – О	Альдегиды	$R-C \searrow O$
Q	Кетоны	R - C - R O

X	Название класса	Общая формула (RX)
Карбоксил – С – ОН	Карбоновые кислоты	R - C - OH
II		ll -
О		О
Нитрогруппа – NO ₂	Нитросоединения	$R-NO_2$
Аминогруппа – NH ₂	Амины	$R - NH_2$
-O-R	Простые эфиры	R - O - R'
- C - OR	Сложные эфиры	0
l II		R'-C
О		→ OR
NH ₂ -, – COOH	Аминокислоты	$NH_2 - R - COOH$

Функциональная группа X — это атом или группа атомов, которые определяют химические свойства соединения. Соединения, содержащие одинаковые функциональные группы, имеют подобные свойства и относятся к одному классу соединений (табл. 2).

Вопросы и упражнения

- 1. Как классифицируются органические вещества?
- 2. Что такое молекулы:
 - а) ациклических соединений;
 - б) циклических соединений;
 - в) карбоциклических соединений;
 - г) гетероциклических соединений;
 - д) ароматических соединений?

Приведите примеры.

- 3. Что такое функциональная группа?
- 4. Дайте классификацию органических веществ по функциональным группам.
- 5. К какому классу органических соединений относятся следующие вещества?

$$CH_{3}CH_{2}OH,\ CH_{3}-O-CH_{3},\ CH_{3}-CHO,\ CH_{3}-C-CH_{3},\ CH_{3}CH_{2}Cl,\ CH_{3}-CH_{3}\\ ||\ O$$

ТЕСТОВЫЙ САМОКОНТРОЛЬ ПО ТЕМЕ: «Строение органических соединений и их классификация»

1	α \circ		
Ι.	Свойства	вешеств	зависят:

- а) от их качественного состава;
- б) от их количественного состава;
- в) от химического строения молекул вещества;
- г) от взаимного влияния атомов в молекуле вещества.
- 2. Какова валентность углерода в органических соединениях:

3. Укажите формулы органических веществ:

- 4. Укажите правильные понятия об изомерах:
 - а) отличаются строением молекул;
 - б) имеют разное число атомов в молекуле;
 - в) имеют одинаковое число атомов в молекуле;
 - г) отличаются физическими и химическими свойствами.
- 5. Укажите, какие вещества являются изомерами:

a)
$$CH_3 - CH_2 - CH_2 - CH_3$$
 6) $CH_3 - C - CH_3$ CH_3

6. Укажите, формулы каких веществ являются изомерами бутанола C_4H_9OH ?

7. Охарактеризуйте соединение:

$$CH_3 \\ CH_3 - C - CH_3 \\ CH_3$$

- а) предельный углеводород;
- б) углеводород разветвленного строения;
- в) непредельный углеводород;
- Γ) изомер пентана C_5H_{12} .
- 8. К какому классу соединений относится вещество состава СН3-О-СН3:
 - а) сложные эфиры;
 - б) простые эфиры;
 - в) карбоновые кислоты;
 - г) кетоны?
- 9. Укажите общую формулу кетона:

a)
$$R - C - OH$$
 6) $R - O - R'$

10. Укажите общую формулу сложного эфира:

a)
$$R - O - R'$$
 6) $R - OH$ **B)** $R' - O - C < O > OR$ **r)** $NH_2 - R - COOH$

4. Углеводороды. Предельные углеводороды

Углеводороды — самые простые органические соединения. В состав углеводородов входят только два элемента: углерод и водород. В зависимости от характера связей между атомами в углеродной цепи углеводороды делят на предельные (насыщенные), непредельные (ненасыщенные) и ароматические углеводороды.

Предельные углеводороды. Углеводороды с общей формулой C_nH_{2n+2} , которые не присоединяют водород и другие элементы, называются предельными (насыщенными) углеводородами или алканами (парафинами). В общей формуле буква n — число атомов углерода в молекуле данного углеводорода.

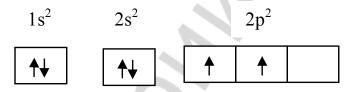
Группа соединений, в которой каждый следующий член отличается от предыдущего на одну метиленовую группу (–СН₂–), называется гомологическим рядом. Сходные по химическим свойствам соединения в гомологическом ряду называются гомологами. Например, гомологический ряд метана дан в таблице 3.

Предельные углеводороды

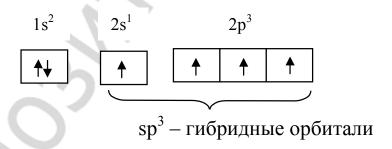
Таблица 3

Формула	Название	Радикал	Название радикала
CH ₄	Метан	CH ₃ -	Метил
C_2H_6	Этан	C_2H_5-	Этил
C_3H_8	Пропан	C ₃ H ₇ -	Пропил
C_4H_{10}	Бутан	C ₄ H ₉ –	Бутил
C_5H_{12}	Пентан	C_5H_{11}	Пентил
C_6H_{14}	Гексан	$C_6H_{13}-$	Гексил
C_7H_{16}	Гептан	C ₇ H ₁₅ -	Гептил
C_8H_{18}	Октан	C ₈ H ₁₇ -	Октил
C_9H_{20}	Нонан	C ₉ H ₁₉ –	Нонил
$C_{10}H_{22}$	Декан	$C_{10}H_{21}-$	Децил

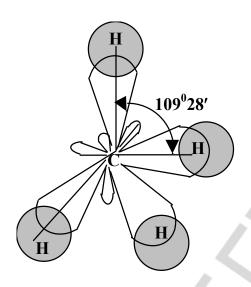
Остаток углеводорода без одного атома водорода называется алкильной группой или радикалом. Названия алкильных групп образуются от названий соответствующих алканов заменой окончания -ан на окончание -ил.


4.1. Электронное и пространственное строение алканов

Простейший представитель алканов — метан CH₄. Строение его молекулы можно выразить структурной (а) или электронной (б) формулой:


Однако эти формулы не отражают пространственного строения молекулы.

Экспериментально установлено, что молекула метана СН₄ имеет форму тетраэдра с углом в 109⁰28′ между связями С – Н (рис. 2). Поскольку в молекуле метана четыре связи атома углерода расположены тетраэдрически и практически одинаковы, то для объяснения этого факта американский химик Л. Полинг в 1931 году ввел понятие **гибридизации**. Сразу отметим, что гибридизиция — это не процесс, в результате которого атомы изменяются, а это просто способ, удобный для объяснения экспериментальных фактов. Согласно Л. Полингу гибридизация — это образование новых орбиталей с одинаковой энергией и симметрично расположенных в пространстве. Новые орбитали он назвал **смешанными** или **гибридными**.


Как известно, в основном (невозбужденном) состоянии атом углерода имеет электронную конфигурацию $1s^22s^22p^2$, что изображается следующей схемой:

При образовании химической связи атом углерода переходит в возбужденное состояние и один из 2s-электронов переходит на 2p-орбиталь:

В возбужденном состоянии атом углерода имеет четыре неспаренных электрона: один 2s-электрон и три 2p-электрона — $1s^22s^12p^3$. При «смешивании» одной 2s-орбитали и трех 2p-орбиталей образуются четыре одинаковые sp^3 -гибридные орбитали (sp^3 -гибридизация). Все четыре sp^3 -гибридные орбитали строго ориентированы в пространстве, образуя тетраэдр (рис. 2).

 $Puc.\ 2.\ Образование$ четырех связей между ${\rm sp}^3$ -гибридными орбиталями атома углерода и 1s-орбиталью атома водорода в молекуле метана

 ${
m sp}^3$ -Гибридные орбитали перекрываются с 1s-орбиталями четырех атомов водорода. Образуется прочная тетраэдрическая молекула с четырьмя σ -связями, которые направлены под углом $109^028'$ друг к другу (рис. 2). В молекулах алканов в образовании σ -связей всегда участвуют гибридные ${
m sp}^3$ -орбитали. Например, молекула этана ${
m C}_2{
m H}_6$ образована перекрыванием двух гибридных орбиталей атомов углерода с углом $109^028'$ между связями ${
m C}$ – H (рис. 3). Во всех других алканах углеродная цепь имеет в пространстве форму зигзага также с углом в $109^028'$ между связями ${
m C}$ – H (рис. 4).

Для атома углерода возможны еще sp^2 - и sp-гибридизации, которые описываются в разделах, посвященных химическим свойствам непредельных углеводородов и бензолу. О типе гибридизации орбиталей, участвующих в образовании связей, судят по величинам углов между связями в молекуле.

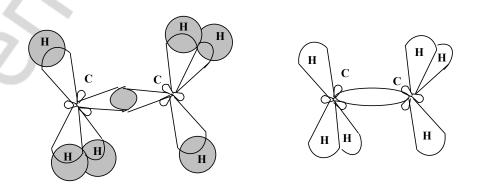


Рис. 3. Образование молекулы этана

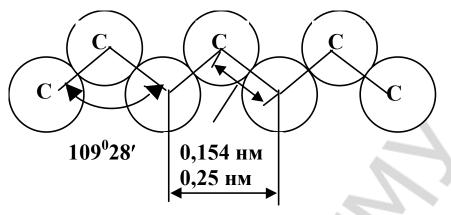


Рис. 4. Зигзагообразное строение углеродных цепей

4.2. Изомерия и номенклатура алканов

Вокруг σ -связей возможно свободное вращение. Из-за этого в гомологическом ряду алканов наблюдается только изомерия цепи, которая характеризуется различным порядком соединения атомов углерода. Метан, этан и пропан не имеют изомеров. Бутан существует в виде двух изомеров; пентан — трех. С увеличением числа атомов углерода в молекуле число возможных изомеров увеличивается. Гексан существует в виде пяти изомеров, декан $C_{10}H_{22}$ имеет семьдесят пять изомеров.

Для составления названий предельных углеводородов с разветвленной цепью, его рассматривают как продукт замещения атомов водорода различными радикалами. Затем поступают так.

- 1. Выбирают в формуле наиболее длинную углеводородную цепь и нумеруют атомы углерода с того конца, к которому ближе разветвление.
- 2. Называют радикалы (начиная с простейшего) и при помощи цифр указывают их место у нумерованных атомов углерода. Если у одного и того же атома углерода находятся два одинаковых радикала, тогда номер повторяют дважды.

Число одинаковых радикалов указывают при помощи чисел на греческом языке («ди-два», «три-три», «тетра-четыре» и т. д.).

Полное название данному углеводороду дают по числу атомов углерода в нумерованной цепи. Названия углеводородов, начиная с пентана, образованы от греческих названий чисел. Для обозначения формулы углеводородов нормального строения в начале формулы названия ставят букву н: н-бутан, н-гексан и т. д.

4.3. Физические свойства алканов

У нормальных алканов с увеличением длины углеводородной цепи повышаются температуры кипения и увеличиваются плотности. Метан, этан, пропан и бутан при нормальных условиях — газы, от пентана до пентадекана $(C_{15}H_{32})$ — жидкости, а следующие гомологи — твердые вещества. Температура кипения н-алканов выше, чем разветвленных изомеров. Алканы неполярны и поэтому практически нерастворимы в воде. Но они растворяются в органических растворителях, например, в бензоле и четыреххлористом углероде. В чистом состоянии алканы бесцветны и имеют слабый запах.

Алканы широко распространены в природе, содержатся в нефти, природных и попутных газах.

4.4. ХИМИЧЕСКИЕ СВОЙСТВА АЛКАНОВ

1. При обычных условиях алканы химически малоактивны и не реагируют со щелочами, кислотами и окислителями. Для алканов характерны реакции замещения, так как все атомы в молекуле связаны прочными σ-связями.

При нагревании алканы вступают в реакции замещения с галогенами (реакции галогенирования), с разбавленной азотной (реакции нитрования) и концентрированной серной (реакции сульфирования) кислотами.

$$\begin{array}{c} CH_4+Cl_2 \xrightarrow{h\lambda} CH_3Cl+HCl \\ CH_3Cl+Cl_2 \xrightarrow{h\lambda} CH_2Cl_2+HCl \\ CH_2Cl_2+Cl_2 \xrightarrow{h\lambda} CHCl_3+HCl \\ CHCl_3+Cl_2 \xrightarrow{h\lambda} CCl_4+HCl \\ \end{array}$$

При нагревании смеси метана с хлором (реакция хлорирования) выше 100°С или при освещении образуется смесь хлоропроизводных метана: хлорметан, дихлорметан, трихлорметан и тетрахлорметан. Эта реакция называется ценной реакцией и осуществляется в три стадии.

А. Инициирование (зарождение цепи). Гомолитическое расщепление молекулы хлора с образованием свободных радикалов: С1-

$$Cl \xrightarrow{\bullet} Cl \xrightarrow{hv} Cl \bullet + \bullet Cl$$

Свободные радикалы — это атомы или группы атомов с неспаренными электронами (\cdot H, \cdot Cl, \cdot CH₃)

Б. Развитие цепи. Радикалы хлора взаимодействуют с углеводородом и образуются свободные углеводородные радикалы.

$$Cl \bullet + H \bullet C \bullet H \longrightarrow H \bullet Cl + \bullet CH_3$$
H

Свободные углеводородные радикалы взаимодействуют с молекулами хлора и образуют свободные радикалы хлора:

$$CH_3 \cdot + Cl : Cl \rightarrow CH_3Cl + \cdot Cl$$

В. Обрыв цепи. Радикалы соединяются с друг другом:

$$Cl \cdot + \cdot Cl \rightarrow Cl_2$$

 $CH_3 \cdot + \cdot CH_3 \rightarrow CH_3 - CH_3$
 $CH_3 \cdot + \cdot Cl \rightarrow CH_3Cl$

2. Все предельные углеводороды горят с образованием оксида углерода (IV) и воды:

$$CH_4 + 2O_2 \rightarrow CO_2 + H_2O$$

3. При сильном нагревании без доступа воздуха предельные углеводороды разлагаются:

$$CH_4 \xrightarrow{1000^0 C} C + 2H_2$$
 $2CH_4 \xrightarrow{1500^0 C} H - C \equiv C - H + 3H_2$
 $CH_3 - CH_3 \xrightarrow{500^0 C, Ni} H_2C = CH_2 + H_2$

4. В присутствии катализаторов и при нагревании углеводородов нормального строения происходит реакция изомеризации и образование углеводородов разветвленного строения.

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3 \xrightarrow{t,AlCl_3} CH_3 - CH - CH_2 - CH_3$$

$$CH_3$$

$$CH_3$$

Реакция изомеризации не происходит, если углеводород содержит в молекуле меньше четырех атомов углерода.

Вопросы и упражнения

- 1. Какие элементы входят в состав углеводородов?
- 2. Как делятся углеводороды в зависимости от характера связей между атомами в углеродной цепи?
- 3. Напишите общую формулу предельных углеводородов. Приведите примеры предельных углеводородов.
 - 4. Что называется гомологическим рядом? Что такое гомологи?
- 5. Назовите первые десять членов гомологического ряда алканов и соответствующие им радикалы.
- 6. Какую геометрическую форму имеет молекула метана? Укажите значение угла между связями С Н в этой молекуле.
- 7. Что такое гибридизация? Какой тип гибридизации характерен для метана и его гомологов?
- 8. Какой тип изомерии существует в ряду алканов? Какие алканы не имеют изомеров?
- 9. Составьте структурные формы всех изомеров н-гексана. Назовите их по международной номенклатуре.
 - 10. Составьте структурные формулы:
 - а) 3-этилгептана;

- б) 2,4-диметилгексана;
- в) 2-метил-3-этилгептана;
- г) 3-метил-5-этилгептана.
- 11. Какие реакции наиболее характерны для алканов?
- 12. Бром реагирует с метаном подобно хлору. Напишите уравнения реакций замещения.

Задачи

- 1. Какой объем водорода (н.у.) образуется при полном термическом разложении 2 моль метана? (Ответ: 89,6 л).
- 2. Какой объем воздуха (н.у.) потребуется для полного сжигания смеси 3 моль метана и 20 л этана, если воздух содержит 20,94 % кислорода по объему? (Ответ: 880,61).
- 3. 4,3 г органического вещества сожгли в кислороде. Образовалось 6,72 л углекислого газа и 6,3 г воды. Плотность вещества по водороду равна 43. Определить формулу органического вещества. (Ответ: C_6H_{14}).
- 4. При сгорании 0,56 л (н.у.) н-бутана получили углекислый газа. Этот газ пропустили через 26,7 мл раствора гидроксида калия с массовой долей его 32 % (плотность раствора 1,31 г/мл). Определите массовую долю соли в растворе после пропускания углекислого газа. (Ответ: 35,1 %).

5. На сжигание 6 л смеси пропана и бутана израсходовали 37,2 л кислорода. Объемы газов измерены при нормальных условиях. Определите состав газовой смеси в объемных долях (%). (Ответ: 20 % пропана).

ТЕСТОВЫЙ САМОКОНТРОЛЬ ПО ТЕМЕ: «ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ»

B) C_6H_6 ;

2. Укажите название предельного углеводорода, который имеет относи-

r) C_6H_{12} .

1. Укажите формулу предельного углеводорода:

6) C_8H_{18} ;

a) C_7H_{14} ;

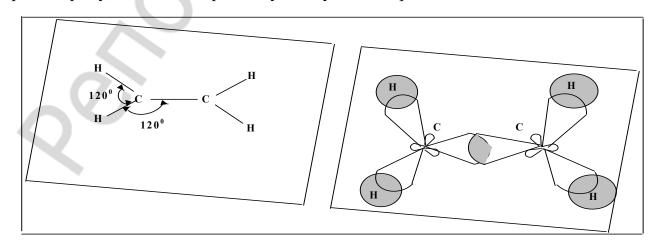
тельную плотность по водороду 36:
а) гексан;б) пентан;в) пропан;г) бутан.
3. Укажите формулу предельного углеводорода, который содерж
20 атомов водорода:
a) C_8H_{20} ; 6) C_9H_{20} ; B) $C_{10}H_{20}$; r) C_7H_{20} .
4. Укажите геометрическую форму молекулы хлороформа:
а) линейная; б) пирамидальная; в) плоскостная; г) тетраэдрическа
5. Укажите соединение, которое является изомером н-пентана:
a) $CH_3 - CH - CH_3$ 6) $CH_3 - CH - CH_2 - CH_3$
CH_3 CH_3
\
B) $CH_3 - CH_2 - CH_2 - CH_2$ r) $CH_2 - CH_2 - CH_2$
B) $CH_3 - CH_2 - CH_2 - CH_2$ r) $CH_2 - CH_2 - CH_2$ CH_3 CH_3
6. Укажите число изомеров для соединения формулы C ₂ H ₄ Br ₂ :
a) 3; b) 4; b) 2; г) 1.
7. Укажите соединение с максимальной температурой кипения:
а) н-пентан; б) изопентан; в) 2,2-диметилпропан; г) изобутан.
8. Укажите число изомеров для алкана с молекулярной массой 86:
a) 5; б) 4; в) 2; г) 3.
9. Какая реакция характерна для передельных углеводородов:
а) обмена; б) замещения; в) соединения; г) присоединения?
10. Укажите, какое из веществ является твердым при комнатной темпер
туре: a) CH ₄ ; б) C ₆ H ₁₄ ; в) C ₅ H ₁₂ ; г) C ₂₀ H ₄₂ .
11. Алканы растворяются:
а) в дистиллированной воде;б) бензоле;
в) метаноле; г) в водопроводной воде.

- 12. Укажите, какое вещество будет реагировать с н-бутаном:
 - а) перманганат калия в щелочной среде;
 - б) перманганат калия в кислой среде;
 - в) холодный разбавленный раствор азотной кислоты;
 - г) бром при освещении светом.
- 13. Охарактеризуйте гомологи метана:
 - **а)** отличаются на группу – CH_2 –;
 - б) имеются газообразные жидкие и твердые вещества;
- **в)** все предельные углеводороды горят с образованием оксида углерода (IV) и воды;
 - г) названия углеводородов имеют окончание -ан.

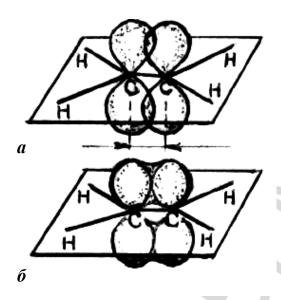
$$CH_3$$
 14. Охарактеризуйте соединение: $CH_3 - C - CH_3$ CH_3

- а) алкан; б) углеводород разветвленного строения;
- в) имеет более высокую температуру кипения, чем н-пентан;
- г) изомер пентана.
- 15. Какие вещества образуются при хлорировании метана:
 - а) хлористый водород; б) дихлорэтан; в) дихлорметан; г) хлороформ?
- 16. Какие пары соединений являются гомологами относительно друг друга:
 - а) пропан и циклопропан; б) пропан и н-пентан;
 - в) 1-хлорпропан и 1-хлорбутан; г) н-бутан и 2-метилпропан?
- 17. Охарактеризуйте свободные радикалы:
 - а) образуются при гомолитическом расщеплении ковалентной связи;
 - б) имеют неспаренные электроны;
- **в)** реагируют с углеводородами с образованием углеводородных радикалов;
 - г) соединяются друг с другом.
 - 18. Какие углеводороды не вступают в реакции изомеризации:
 - **а)** метан; **б)** этан; **в)** пропан; **г)** бутан?
- 19. Укажите название алкана, в молекуле которого содержится 16 связей σ-типа:
 - **а)** пропан; **б)** бутан; **в)** пентан; **г)** этан.
 - 20. Какие факторы сместят вправо равновесие процесса

$$2\text{CO}(\Gamma) + 5\text{H}_2(\Gamma) \Longrightarrow \text{C}_2\text{H}_6(\Gamma) + 2\text{H}_2\text{O}(\Gamma)$$
:


- а) понижение давления;
- б) повышение давления;
- в) поглощения паров воды концентрированной серной кислотой;
- г) применение катализатора?

5. Непредельные алифатические углеводороды


Непредельными или ненасыщенными углеводородами называются углеводороды, в молекулах которых атомы углерода связаны между собой кратными (двойными или тройными) связями. Наиболее важными из непредельных алифатических углеводородов являются этиленовые, диеновые и ацетиленовые углеводороды.

5.1. Этиленовые углеводороды (олефины, алкены)

Этиленовые углеводороды имеют одну двойную связь и общую формулу C_nH_{2n} . Простейшее соединение с двойной связью — это этилен $CH_2 = CH_2$. В молекуле этилена появляются связи и σ -, и π -типа. Согласно экспериментальным данным, все шесть атомов располагаются в одной плоскости и углы между связями очень близки к 120° (рис. 5). Плоское строение молекулы и угол между связями 120° позволяют считать, что для образования σ -связей каждый атом углерода соединяется с тремя другими атомами (одним атомом углерода и двумя атомами водорода). В этом случае в гибридизации участвуют только три электронных облака — одного s-электрона и двух p-электронов. Происходит sp²-гибридизация (рис. 5). Но у каждого атома углерода остается по одному p-электрону, облака которых не участвуют в гибридизации.

Puc. 5. Схема образования σ-связей в молекуле этилена

Puc.~6. Схема образования π -связи в молекуле этилена: a — боковое перекрывание облаков p-электронов; δ — распределение общего облака π -связи над плоскостью и под плоскостью атомных ядер

Оси этих электронных облаков направлены перпендикулярно плоскости молекулы и перекрываются между собой выше и ниже плоскости молекулы. Образуется второй тип связи между атомами углерода. Эта связь называется π -связью (рис. 6).

Таким образом, углерод — углеродная двойная связь в молекулах этиленовых углеводородов состоит из одной σ - и одной π -связи.

Расстояние между центрами атомов углерода в молекуле этилена равно 0,134 нм, а в молекуле этана оно равно 0,154 нм. π -Связь в этиленовых углеводородах более слабая, чем σ -связь.

Изомерия и номенклатура. Названия этиленовых углеводородов образуются от названия алканов, изменяя окончание -ан на -ен (этен, пропен, бутен и т. д.). Часто применяют старое окончание -илен (этилен, пропилен, амилен вместо пентилена). Выбирают самую длинную углеродную цепь и нумеруют ее с конца, к которому ближе расположена двойная связь.

У алкенов, начиная с бутена, наблюдается структурная изомерия и пространственная изомерия (цис- и транс-). Структурная изомерия характеризуется разветвлением углеродной цепи или положением двойной связи; пространственная изомерия — отсутствием свободного вращения вокруг двойной связи.

Например: изомерия 2-метил-пропена-1 объясняется разветвлением углеродной цепи; бутена-2 — изменением положения двойной связи.

$$\overset{1}{C}H_{2} = \overset{2}{C}H - \overset{3}{C}H_{2} - \overset{4}{C}H_{3}$$
 $\overset{1}{C}H_{2} = C - CH_{3}$
 $\overset{1}{C}H_{2} = C - CH_{3}$
 $\overset{1}{C}H_{3}$

2-метил-пропен-1

$$CH_3$$
 $C = C$ H CH_3 C

Если в молекулах есть заместители и двойная связь, то нумерацию начинают с того конца цепи, к которому ближе двойная связь, например:

$$\overset{5}{C}H_{3} - \overset{4}{C}H - \overset{3}{C}H = \overset{2}{C}H - \overset{1}{C}H_{3}$$

$$\overset{5}{C}H_{3} - \overset{4}{C}H - \overset{3}{C}H = \overset{2}{C}H - \overset{1}{C}H_{3}$$

3,4 диметилпентен-2

Цис- и транс-бутены являются пространственными изомерами (стереоизомерами).

Получение алкенов. Чаще всего алкены получают в результате реакций отщепления и при крекинге нефтяных продуктов.

1. Отщепление воды от спиртов (дегидратация):

1. Отщепление воды от спиртов (дегидратация):
$$CH_3 - CH - CH_2 - CH_3 \xrightarrow{\text{(Al}_2O_3, \ H_2SO_{4(конц.)}, \ ZnCl_2)}} CH_3 - CH = CH - CH_3 + H_2O$$
 OH

2. Отщепление водорода от алканов (дегидрирование, дегидрогенизация) при температуре 450-650°C в присутствии катализатора (Cr_2O_3 , $Al_2O_3 + KOH$):

$$CH_3 - CH_2 - CH_2 - CH_3 \rightarrow CH_3 - CH = CH - CH_3 + H_2$$

3. Отщепление галогенов от дигалогенопроизводных:

$$CH_3 - CH - CH_2 + Zn$$
 \longrightarrow $CH_3 - CH = CH_2 + ZnBr_2$
 Br Br

4. Отщепление галогеноводорода от галогенопроизводного в присутствии спиртового раствора щелочи:

$$CH_3 - CH_2 - CH - CH_3$$
 — $CH_3 - CH = CH - CH_3 + HBr$ Вг 5. Крекинг нефтяных продуктов:

$$CH_3 - CH_2 - CH_2 - CH_3 \rightarrow H_2C = CH_2 + CH_3 - CH_3$$

Образуется смесь алканов и алкенов, которую разделить на алкены и алканы очень трудно.

Получение этилена.

1. Этилен в лаборатории получают при нагревании смеси этилового спирта с концентрированной серной кислотой:

$$C_2H_5OH \xrightarrow{H_2SO_{4(KOHIL.)}} H_2C = CH_2 + H_2O$$

2. В промышленности этилен получают дегидрированием этана или частичным гидрированием ацетилена:

$$CH_3 - CH_3 \rightarrow H_2C = CH_2 + H_2$$

 $HC \equiv CH + H_2 \rightarrow H_2C = CH_2$

Физические свойства. Низшие алкены-газы, алкены от C_5 до C_{14} — жидкости, высшие алкены — твердые вещества. Температуры кипения и плотности алкенов увеличиваются с увеличением длины углеродной цепи. В алкенах электронная плотность повышена у двойной связи. Все алкены практически нерастворимы в воде, мало растворимы в спиртах.

Химические свойства. π-Связь легко разрушается под влиянием различных реагентов. Это объясняется меньшей прочностью л-связи, так как электронные облака перекрываются в этом случае вне плоскости молекулы (рис. 6). Поэтому алкены легче вступают в химические реакции, чем алканы. Для алкенов характерны реакции присоединения по двойной связи.

1. Присоединение водорода (гидрирование):

$$CH_3 - CH = CH_2 + H_2 \xrightarrow{Pt} CH_3 - CH_2 - CH_3$$

2. Присоединение галогенов (галогенирование):

$$CH_2=CH_2+Cl_2 o CH_2Cl-CH_2Cl$$
 $CH_3-CH=CH_2+Br_2$ (бромная вода) $\to CH_3-CHBr-CH_2Br$

3. Присоединение галогеноводородов:

$$H_2C = CH_2 + HBr \rightarrow CH_3 - CH_2Br$$

 $H_2C = CH_2 + HCl \rightarrow CH_3 - CH_2Cl$

Пропилен и другие алкены реагируют с галогеноводородами по правилу В.В. Марковникова: водород присоединяется к наиболее, а атом галогена — к наименее гидрированному атому углерода:

$$CH_2 = CH - CH_3 + HBr \rightarrow CH_3 - CHBr - CH_3$$

4. Присоединение воды (гидратация):

$$CH_2 = CH_2 + HOH \xrightarrow{Kat.t} CH_3CH_2OH$$

 $CH_3 - CH = CH_2 + HOH \rightarrow CH_3 - CHOH - CH_3$

Присоединение воды к алкенам идет по правилу В.В. Марковникова.

5. Окисление. Алкены легко окисляются. Водный раствор перманганата калия КМпО₄ окисляет этилен в этиленгликоль:

$$3CH_2 = CH_2 + 2KMnO_4 + 4H_2O \rightarrow 3CH_2OH - CH_2OH + 2MnO_2 + 2KOH$$

Эту реакцию, как и реакцию с бромной водой применяют для качественного обнаружения алкенов. В кислороде, в воздухе алкены горят светящимся пламенем:

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

6. Полимеризация. Полимеризация — это процесс, при котором небольшие молекулы (мономеры) соединяются друг с другом с образованием высокомолекулярного соединения (ВМС). При полимеризации молекулы алкена соединяются по месту разрыва двойной связи:

$$CH_2 = CH_2 + CH_2 = CH_2 + ... \rightarrow -CH_2 - CH_2 - CH_2 - CH_2 - ...$$

или: $n CH_2 = CH_2 \rightarrow (-CH_2-CH_2-)_n$, где n — степень полимеризации (число молекул мономера). Известны полимеры: полиэтилен, полипропилен, полибутилен и другие.

Применение алкенов. Алкены применяются для получения алкилгалогенидов, спиртов, полимеров и других соединений. Этилен ускоряет созревание цитрусовых и обладает анестезирующими свойствами. Алкены токсичны для человека.

Вопросы и упражнения

- 1. Какие углеводороды называются непредельными?
- 2. Какие непредельные углеводороды называются алкенами? Напишите общую формулу алкенов.
- 3. Укажите тип гибридизации орбиталей атомов углерода, связанных двойной связью в молекулах алкенов.
- 4. В чем различие между σ- и π-связью в молекуле этилена? Какая из связей менее прочная? Объясните почему.
- 5. Какие виды изомерии наблюдаются у предельных и непредельных углеводородов? Приведите примеры.
- 6. Составьте структурные формулы изомерных углеводородов, имеющих молекулярную массу 56. Назовите изомеры.
- 7. Почему число изомеров у углеводородов ряда этилена больше, чем у предельных углеводородов? Для доказательства приведите изомеры углеводородов с молекулярными формулами C_4H_{10} и C_4H_8 .
- 8. Укажите изомеры из числа тех веществ, формулы которых приведены ниже:

a)
$$CH_2 = C - CH_3$$
 6) $CH_2 - CH - CH_3$ **B)** $CH_2 = CH - CH = CH_2$ $CH_2 - CH_2$

$$\Gamma$$
) $CH_2 - CH_2$ д) $CH_3 - CH = CH - CH_2 - CH_3$ e) $CH_3 - CH = CH - CH_3$ $CH_2 - CH_2$

9. Дайте названия по международной номенклатуре следующим углеводородам:

a)
$$CH_2 = C - CH_2 - CH_3$$
 6) $CH_3 - CH = C - CH - CH_2 - CH_3$ $CH_3 - CH_3 - CH_3 - CH_5$

10. Среди веществ, формулы которых приведены ниже, укажите: изомеры и гомологи пентена – **a)** $CH_3 - CH = CH_2 - CH_3$

6)
$$CH_3 - C = CH - CH_3$$
 B) $CH_3 - CH_2 - CH_2 - CH = CH_2$ CH_3

$$\Gamma$$
) $CH = CH$ д) $CH_3 - CH_2 - CH_2 - CH_3$ $H_2C - CH_2$ CH_2 CH_2

- 11. Составьте структурные формулы следующих углеводородов:
 - **а)** 3-этил-гептена-2;
- **б)** 3,3 диметилпентена-1;
- в) 3-метил-4-этилгексена-2.
- 12. У каких из приведенных ниже соединений возможна цис-трансизомерия: **a)** бутена-1; **б)** пентена 2; **в)** 2-метилбутена-2; **г)** 2-метилпропена? Приведите формулы изомеров.
- 13. Как получают этилен и углеводороды ряда этилена? Напишите уравнения соответствующих реакций.
- 14. Какие реакции являются качественными реакциями на алкены? Напишите уравнения этих реакций.
- 15. Сформулируйте правило Марковникова. Напишите уравнение реакции взаимодействия пропена и бутена-1 с бромистым водородом.
- 16. Что называется полимеризацией? Напишите уравнение реакции полимеризации пропилена и тетрафторэтилена.
 - 17. Где применяются этилен и его производные?
- 18. Определите молекулярную формулу этиленового углеводорода, молекулярная масса которого: **a)** 98; **б)** 126.

ЗАДАЧИ

- 1. При пропускании этилена через бромную воду масса склянки с бромом увеличилась на 14 граммов. Какой объем этилена (н.у.) поглотился при этом? Сколько граммов дибромэтана получилось? (Ответ: 11,2 л)
- 2. Какой объем водорода могут присоединить: а) 100 мл пропена; б) 3,5 г пентена? (Ответ: а 100 мл; б 1,12 л)
- 3. Сколько литров воздуха потребуется для сжигания 50 л пропилена (н.у.)? (Ответ: 1071,4 л)
- 4. Сколько граммов дихлорэтана может быть получено из смеси 1 моль этилена и 11,2 л хлора при нормальных условиях? (Ответ: 49,5 г)
- 5. Какой объем HCl (н.у.) может прореагировать с 60 г смеси, содержащей 15 % CHCl₃, 23 % гексана и 62 % гексена? (Ответ: 9,92 л)
- 6. Определите молярную массу и напишите формулу этиленового углеводорода, если известно, что 1,12 г этого углеводорода реагирует с 8 г раствора брома в хлороформе с массовой долей брома 40 %. (Ответ: C₄H₈)
- 7. Непредельный углерод этиленового ряда прореагировал с хлором. Получилось вещество, плотность паров которого по водороду равна 63,5. Какой углеводород реагировал с хлором? (Ответ: C_4H_8)
- 8. Для сжигания 8 литров смеси метана и этилена потребовалось 100 литров воздуха (н.у.). Рассчитать состав исходной смеси в объемных долях. Объемная доля кислорода в воздухе равна 21 %. (Ответ: 37,5 % CH_4 ; 62,5 % C_2H_4)
- 9. Какая масса бромной воды с массовой долей брома 2 % может обесцветить 5,6 л этиленового углеводорода, плотность паров по воздуху которого равна 1,93? Установите формулу углеводорода. (Ответ: $2 \ \text{кг} \ \text{C}_4\text{H}_8$)

Тестовый самоконтроль по теме: «Этиленовые углеводороды».

1. Укажите формулу 4-метилпентена-2:

a)
$$(CH_3)_2CH - CH = CH - CH_3;$$

6)
$$(CH_3)_2C = CH - CH_2 - CH_3;$$

B)
$$CH_2 = CH - CH_2 - CH(CH_3)_2$$
;

r)
$$CH_2 = CH - CH(CH_3) - CH_3$$
.

2. Укажите название соединения, представленное формулой

$$CH_3 - CH - CH_2 - CH = CH_2$$
:
 CH_3

- **а)** 2-метилпентен; **б)** –гексен-1; **в)** 4-метилпентен; **г)** 4-метилпентен-1.
- 3. Укажите формулу соединения, которое обладает цис-, трансизомерией: **a)** $H_3C CH = CH_2$; **б)** $CH_3CH = CHCH_3$;

B)
$$(CH_3)_2C = CH_2$$
;

$$\Gamma$$
) CH₃ – CH = CBr₂.

	а) пять σ- и од	цну π-связь;	б) пять о	- и две π-связи;
	в) шесть σ- и	одну π- =свя	зь; г) девять	σ- и одну π-связь.
5.	Эмпирическая	я формула со	оединения СН2.	Молекулярная масса соеди-
нения 4	2. Его молекуля	ярная формул	па:	
	a) CH ₂ ;	б) С ₂ H ₂ ;	в) С ₃ Н ₆ ;	Γ) C_3H_8 .
6.	Чем отличают	ся друг от др	уга бутен-1 и б	утен-2?
	а) числом ато	мов углерода	i;	
	б) местом разв	ветвления уг.	перодной цепи;	
	в) местом рас	положения д	войной связи;	
	г) относительн	ной молекуля	ярной массой.	
7.	Укажите изом	еры бутена-1	l:	
	а) пентен-1;	б) бутен-2;	в) 2-метилпрог	пен; г) 2,2-диметилпропен.
8.	Укажите спос	обы получен	ия алкенов:	
	а) отщепление	е воды от спи	іртов;	
	б) дегидриров	ание алканов	3;	
	в) взаимодейс	твие карбида	а кальция с водо	рй;
	г) крекинг нес	ртяных проду	уктов.	
9.	При действии	спиртовых	растворов щело	чей на галогенопроизводные
алканов	образуются:			
	а) алкины;	б) спирты;	в) алкены;	г) алканы.
10). Укажите, с по	омощью како	ого вещества ме	ожно отличить гексан от гек-
сена (н.	y.):			
			б) бромной вод	ды ;
	в) водорода;	h '	г) хлорной вод	ы?
11	1. Какое вещест	во образуетс	я при взаимоде	йствии этилена с водой:
	а) ацетальдеги	ид;	б) диэтиловый	эфир;
	в) этанол;		г) уксусная кис	
12	2. Какое вещест	тво образуетс	я при окислени	и этилена в растворе перман-
ганата к	алия KMnO ₄ :			
	а) щавелевая	кислота;	б) уксусная кис	слота;
	в) этиленглик		•	
13	3. Укажите, к к	акому соеди	нению присоед	инение бромистого водорода
не идет	по правилу Ма	рковникова:		

4. Молекула этилена имеет:

a) $CH_2Cl - CH = CHCl + HBr \rightarrow$; 6) $CHF_2- CH = CH_2 + HBr \rightarrow$;

B) $CH_3 - CH_2 - CH = CH_2 + HBr \rightarrow$; **r)** $CH_3 - CH = CH - CH_3 + HBr \rightarrow$.

- 14. Степень полимеризации полиэтилена с молекулярной массой 1400 равна:
 - **a)** 25; **б)** 100; **в)** 50; **г)** 75.
 - 15. Какие вещества обесцвечивают бромную воду:
 - **а)** полипропилен; **б)** цис-бутен-2;
 - **в)** транс-бутен-2; г) 2-хлорбутен-2?

5.2. Диеновые углеводороды (алкадиены)

К диеновым углеводородам относятся органические соединения с общей формулой C_nH_{2n-2} , в молекулах которых имеются две двойные связи. Практическое значение имеют диеновые углеводороды, у которых двойные связи расположены через один углеродный атом. Например, бутадиен-1,3 $CH_2 = CH - CH = CH_2$, 2-метилбутадиен-1,3 (изопрен) $CH_2 = C - CH = CH_2$

Это соединения с сопряженными двойными связями.

Для алкадиенов характерна структурная изомерия (разное положение двойных связей или разветвление углеродной цепи) и пространственная изомерия (цис- и транс-изомерия).

Получение

1. Дегидрирование и дегидратация этанола (реакция С.В. Лебедева).

$$2CH_3 - CH_2 - OH$$
 $Al_2O_3, ZnO \over 425^0C$ $CH_2 = CH - CH = CH_2 + H_2 + 2H_2O$

2. Дегидрирование алканов и алкенов:

$$CH_3 - CH_2 - CH_2 - CH_3$$
 $\frac{Al_2O_3, Cr_2O_3}{500-600^0C}$ $CH_2 = CH - CH = CH_2 + 2H_2$

$$CH_{3} - CH - CH_{2} - CH_{3} \qquad \frac{Al_{2}O_{3}, Cr_{2}O_{3}}{t^{0}C} \quad CH_{2} = C - CH = CH_{2} + 2H_{2}$$

$$CH_{3} \qquad CH_{3}$$

$$CH_2 = CH - CH_2 - CH_3$$
 $MgO, ZnO \over 500-600 C$ $CH_2 = CH - CH = CH_2 + H_2$

Химические свойства. Алкадиены вступают в реакции присоединения. Присоединение галогенов или галогеноводородов у диеновых углеводородов с сопряженными связями происходит прежде всего по концам молекулы. Идет разрыв двойных связей:

$$CH_2 = CH - CH = CH_2 + Br_2 \rightarrow BrCH_2 - CH = CH - CH_2Br$$

При избытке брома образуется 1,2,3,4 тетрабромбутан:

$$CH_2Br - CHBr - CHBr - CH_2Br$$

Бутадиен-1, 3 и 2-метил-бутадиен-1,3 вступают в реакции полимеризации и образуют каучуки соответственно: бутадиеновый (1) и изопреновый (2)

$$nCH_2 = CH - CH = CH_2 \rightarrow (-CH_2 - CH = CH - CH_2 -)n$$
 (1)

$$nCH_2 = C - CH = CH_2 \rightarrow (-CH_2 - C = CH - CH_2 -)n$$
 (2)
 CH_3 CH_3

Каучуки обладают эластичностью, т. е. способны восстанавливать форму. Они непроницаемы для воды и газов.

Вопросы и упражнения

- 1. Какие соединения называются диеновыми углеводородами?
- 2. Какие виды изомерии характерны для диеновых углеводородов? Приведите примеры.
 - 3. Какие реакции характерны для диеновых углеводородов?
 - 4. С помощью каких реакций можно отличить гексан от гексадиена-1,2?
- 5. Как получить бутадиен-1, 3: а) из бутана; б) из бутена-1? Напишите уравнения реакций.
- 6. Какие вещества могут быть получены при гидрировании бутадиена-1,3? Напишите уравнения реакций.
- 7. Назовите по международной номенклатуре вещества, получающиеся при присоединении к молекуле бутадиена-1,3: а) одной молекулы брома; б) одной молекулы бромоводорода; в) двух молекул бромоводорода; г) двух молекул брома.

Тестовый самоконтроль по теме: «Диеновые углеводороды»

- 1. Сопряженные алкадиены имеют две двойные связи:
 - а) в любом положении;
 - б) разделенные одной одинарной связью;
 - в) разделенные двумя или более одинарными связями;
 - г) не разделенные одинарной связью.

- 2. Укажите, какое из перечисленных ниже соединений относится к сопряженным алкадиенам:

 а) бутадиен-1,3; б) бутадиен-1,2; в) гексадиен-1,5; г) пентадиен-1,4.

 3. Укажите общую формулу гомологического ряда, в состав которого
 - **a)** CnH_{2n} ; **6)** CnH_{2n-2} ; **B)** CnH_{2n+2} ; **r)** CnH_{2n-6} .
 - 4. Как называются углеводороды, к которым относится изопрен:
 - а) предельные; б) этиленовые; в) ацетиленовые; г) диеновые?
 - 5. Охарактеризуйте соединение $CH_2 = C C = CH_2$

- а) разветвленный углеводород;
- б) имеются сопряженные двойные связи;
- **в)** 2,3 диметилбутадиен-1,4;

входит вещество $CH_2 = CH - CH = CH_2$

- **г)** 2,3 диметилбутадиен-1,3.
- 6. Бутадиеновый каучук образуется в результате реакции:
 - а) дегидрирования бутана;
 - б) полимеризации бутена-1;
 - в) полимеризации бутадиена-1,3;
 - г) дегидратации и дегидрирования этилового спирта.
- 7. Какие исходные мономеры применяются для получения каучуков:
- **а)** этилен; **б)** ацетилен; **в)** бутадиен-1,3; 8. Укажите способы получения бутадиена 1,3:
 - **а)** дегидрирование этана;
 - б) дегидратация этанола;
 - в) дегидрирование бутана;
 - г) одновременная дегидратация и дегидрирование этанола.
- 9. Охарактеризуйте каучук:
 - а) полимер;

б) растворим в воде;

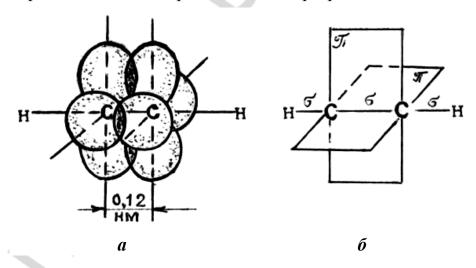
г) эластичен.

г) изопрен?

- в) непроницаем для воды и газов;
- 10. Укажите вещества, с которыми взаимодействует бутадиен-1,3:
 - **а)** раствор перманганата калия KMnO₄;
- б) бромистый водород;

в) раствор брома;

г) металлический натрий.


5.3. Ацетиленовые углеводороды (алкины)

Ацетиленовые углеводороды — это углеводороды, в молекулах которых два атома углерода связаны друг с другом тройной связью. Длина связи $C \equiv C$ в

алкинах равна 0,120 нм. Общая формула алкинов C_nH_{2n-2} . Простейшее соединение с тройной связью — это ацетилен $HC \equiv CH$.

В молекуле ацетилена атомы водорода и углерода расположены на одной прямой, поэтому молекула имеет линейное строение. Атомы углерода соединены между собой одной σ-связью и двумя π-связями (рис. 7). В молекуле ацетилена каждый атомом углерода соединен σ-связями только с одним атом углерода и с одним атомом водорода, поэтому в гибридизации здесь участвуют одна s-орбиталь и одна р-орбиталь каждого атома углерода (sp-гибридизация). В результате sp-гибридизации в ацетилене у каждого атома углерода образуются по две гибридных sp-орбитали. Эти две гибридные орбитали (от каждого атома по одному) взаимно перекрываются и между атомами углерода образуется σ-связь. Остальные две гибридные орбитали перекрываются с s-орбиталями водорода и между ними и атомами углерода тоже образуются σ-связи. Четыре (от каждого атома углерода по два) негибридных р-орбитали расположены взаимно перпендикулярно и перпендикулярно направлениям σ-связей.

В этих плоскостях р-орбитали взаимно перекрываются и образуются две π -связи, которые в химических реакциях легко разрываются.

Puc.~7.~ Схема образования π -связей в молекуле ацетилена: a — попарно боковое перекрывание облаков p-электронов; δ — две взаимно перпендикулярные плоскости, в которых происходит образование π -связей

Изомерия и номенклатура. Названия углеводородов ряда ацетилена образуются в результате замены суффикса -ан в предельных углеводородах на -ин (этин, пропин, бутин и т. д.). У алкинов имеется структурная изомерия, которая

определяется разветвлением углеродной цепи или положением тройной связи. Например, пентин C_5H_8 образует следующие изомеры:

$$HC \equiv C - CH_2 - CH_2 - CH_3 - \text{пентин-1}, \ HC \equiv C - CH - CH_3 - 3\text{-метилбутин-1},$$

$$|$$

$$CH_3$$

$$CH_3 - C \equiv C - CH_2 - CH_3 -$$
пентин-2.

Алкины и алкадиены имеют одну общую формулу. Поэтому они являются изомерами по отношению друг другу. Например, 2-метил-бутадиен-1,3, пентин-1, пентин-2 и 3-метил-бутин-1 являются изомерами. Они имеют общую формулу C_5H_8 . Изомерия между соединениями различных классов называется межклассовой изомерией.

Получение. В лаборатории и промышленности ацетилен получают при взаимодействии карбида кальция с водой и из метана.

$$CaC_2 + 2H_2O \rightarrow HC \equiv CH + Ca(OH)_2$$

 $2CH_4 \xrightarrow{t^0} HC \equiv CH + 3H_2$

Физические свойства. В гомологическом ряду алкинов первые четыре члена — газы, алкины C_5 — C_{15} — жидкости, от C_{16} — твердые вещества.

Химические свойства

1. Реакции присоединения:

а) Гидрирование (присоединение)

$$HC \equiv CH$$
 $\frac{H_2}{(Ni, Pt)}$ $CH_2 = CH_2$ $\frac{H_2}{(Ni, Pt)}$ $CH_3 - CH_3$

б) Галогенирование

$$HC \equiv CH$$
 $\xrightarrow{Br_2}$ $HC = CH$ $\xrightarrow{Br_2}$ $CHBr_2 - CHBr_2$ Br Br

Бромная вода обесцвечивается. Эта реакция является качественной на алкины, как и на все ненасыщенные углеводороды.

в) Присоединение галогеноводородов

$$HC \equiv CH$$
 \xrightarrow{HCl} $CH_2 = CHCl$ \xrightarrow{HCl} $CH_3 - CHCl_2$ $1,1$ -дихлорэтан

г) Гидратация ацетилена (реакция М.Г. Кучерова). Присоединение воды к ацетилену происходит в присутствии катализатора — солей ртути (II) — $Hg(NO_3)_2$, $HgSO_4$. Образуется уксусный альдегид.

$$HC \equiv CH + HOH \rightarrow CH_3CHO$$

2. Реакции окисления

а) Горение (полное окисление)

$$2C_2H_2 + 5O_2 \xrightarrow{t} 4CO_2 + 2H_2O$$

б) Неполное окисление под действием сильных окислителей (KMnO₄, $K_2Cr_2O_7$)

$$CH_3 - C \equiv C - CH_3 + 3[O] + H_2O \rightarrow 2CH_3 - COOH$$

Раствор $KMnO_4$ обесцвечивается. Реакция с $KMnO_4$ — качественная реакция на алкины.

3. Реакции полимеризации

Алкины могут образовывать линейные димеры, тримеры и полимеры, циклические тримеры.

$$HC \equiv CH + HC \equiv CH$$
 $\xrightarrow{CuCl, H^+}$ $CH_2 = CH - C \equiv CH$ (винилацетилен) $3HC \equiv CH$ $\xrightarrow{CuCl, H^+}$ $CH_2 = CH - C \equiv C - CH = CH_2$ (дивинилацетилен) $3HC \equiv CH$ \xrightarrow{yronb} C_6H_6 (бензол)

4. Кислотные свойства

В отличие от этана и этилена ацетилен проявляет свойства очень слабых кислот, атомы водорода в нем замещаются атомами металла. Например, при пропускании ацетилена через аммиачные растворы солей серебра и меди выпадают осадки ацетиленидов.

$$HC \equiv CH + 2AgOH \rightarrow Ag - C \equiv C - Ag + 2H_2O$$

 $HC \equiv CH + 2CuOH \rightarrow Cu - C \equiv C - Cu + 2H_2O$

Применение ацетилена. Ацетилен является исходным продуктом для получения ряда химических соединений: этанола, уксусной кислоты, синтетического каучука и других соединений.

Вопросы и упражнения

- 1. Какие углеводороды называются алкинами? Какова общая формула гомологического ряда алкинов?
- 2. Напишите структурную формулу вещества, изомерного бутину, но принадлежащего к другому классу углеводородов.
- 3. Какие типы изомерии характерны для алкинов? Напишите структурные формулы изомеров пентина и назовите их по международной номенклатуре.
 - 4. Напишите структурные формулы веществ:
 - **а)** 3,3-диметилбутина-1;
- **б)** 4-метилпентина-2;
- **в)** 3-метилбутина-1;
- **г)** 1,4-дихлорбутина-2.
- 5. Дайте название по международной номенклатуре следующим вешествам:

a)
$$CH_3 - C \equiv C - CH - CH_3$$
 6) $CH_3 - CH_2 - CH - C \equiv CH$
 CH_3 CH_3

B) $CH_2 = CH - CH - CH = CH - CH_3$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

- 6. Из каких веществ можно получить ацетилен? Напишите уравнения реакций.
- 7. Напишите уравнения реакций присоединения, характерных для бутина-1.
 - 8. Напишите уравнения качественных реакций для алкинов.
 - 9. Как получить хлорэтан из ацетилена? Напишите уравнения реакций.
- 10. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

метан \rightarrow ацетилен \rightarrow винилхлорид \rightarrow полихлорвинил.

ЗАДАЧИ

- 1. Какой объем ацетилена (н.у.) может быть получен из 1 кг технического карбида кальция, содержащего 30 % примесей? (Ответ: 245 л)
- 2. Из 100 г карбоната кальция получен карбид кальция. Какой объем ацетилена получится при действии воды на образовавшийся карбид кальция? Сколько уксусного альдегида образуется из ацетилена? (Ответ: 22,4 л; 44 г СН₃СНО)
- 3. Объем смеси ацетилена и водорода равен 56 литрам. После пропускания смеси над катализатором ее объем уменьшился до 44,8 л (ацетилен прореа-

гировал полностью). Определите состав полученной смеси газов в объемных процентах. (Ответ: 12,5 % этана; 87,5 % водорода)

- 4. При пропускании смеси этана и ацетилена через раствор бромной воды масса раствора увеличилась на 1,3 г. При полном сгорании такого же количества смеси углеводородов выделилось 14 л углекислого газа. Какой объем исходной смеси газов? (Ответ: 7 л)
- 5 Какой объем (в питрах и у) винипупорила образуется при присоели-

	1 , 2 ,	нилхлорида образуется при присоеди-	
нении хл	пористого водорода к ацетилену,	полученному из 2 м³ (н.у.) природного	
газа с со	держанием метана 98 % по объем	лу? Выход винилхлорида равен 86 %, а	
выход аг	цетилена — 78 % от теоретическо	ого. (Ответ: 657 л)	
	Тесторий сла	MOMONTHO III	
	Тестовый сам по теме «Ацетиленов		
1	Какие углеводороды имеют общ		
1.			
2	а) этиленовые; б) диеновые; в) ацетиленовые; г) предельные? 2. Длина углерод – углеродной связи в ряду этан – этен – этин:		
2.		тся; в) практически не изменяется.	
2		тся, в) практически не изменяется. ектронных облаков атомов углерода	
и онжом	$a) sp, sp^2; $	ения соединения: $CH_3 - C \equiv C - CH_3$	
4	, 1. 1 . , 1. 1,	7 1 1	
4.		нов с молекулярной формулой C_5H_8 :	
-	а) один; б) три; в) четыр		
		ветствуют названию 2-хлор-гексадиен-	
1,3-ин-5		CH	
	a) $CH_3 - CHCl - CH = CH - CH =$		
	6) $CH_2 = CCl - CH = CH - C \equiv CH$;		
	B) $CH_2 = CC1 - CH_2 - C \equiv C - CH_3;$		
	r) $HC \equiv C - CH = CH - CCl = CH$	I_2 .	
6.	Укажите изомеры пентина–1:		
	а) 3-метилбутин-1;	б) циклопентан;	
	в) 2-метилбутадиен-1,3;	г) пентин-2.	
7.	Охарактеризуйте химическое стр	роение молекулы ацетилена:	
	а) три σ и две π -связи;	б) три π-связи;	
	в) π-связи образованы при перек	рывании р-орбиталей атомов углерода;	
) <i>(</i>		

- г) sp-гибридизация атомов углерода.
- 8. Укажите способы получения ацетилена:
 - а) дегидрирование метана;

- б) взаимодействие карбида кальция с водой;
- в) горение метана;
- г) взаимодействие гидрида кальция с водой.
- 9. Укажите физические свойства углеводородов:
 - а) растворимы в воде;
 - б) растворимы в бензине;
 - **в)** с увеличением молекулярной массы температура кипения повышается;
 - г) горючие вещества.
- 10. Укажите реагент, который позволит отличить этилен от ацетилена:
 - а) щелочной раствор перманганата калия;
 - б) бромная вода;
 - в) аммиачный раствор хлорида меди (I);
 - г) концентрированная серная кислота.
- 11. Какая из реакций носит название реакции М.Г. Кучерова:
 - а) тримеризация ацетилена;
 - **б)** окисление непредельных углеводородов раствором перманганата калия;
 - в) гидратация ацетилена в присутствии Hg^{2+} ;
 - г) гидратация этилена?
- 12. Какой тип реакции характерен для ацетиленовых углероводородов:
 - а) разложения; б) замещения; в) присоединения; г) обмена
- 13. Укажите вещества, которые обесцвечивают бромную воду:
 - **а)** изопрен; **б)** полиэтилен; **в)** бутин-2; **г)** 2-метилбутен-2.
- 14. Укажите реакции, в которые вступают углеводороды с двойными и тройными связями:
 - а) гидратации;

- **б)** гидрирования;
- в) присоединения галогеноводородов; г) полимеризации.
- 15. Укажите, какие вещества можно получить из ацетилена:
 - а) винилхлорид; б) бензол; в) уксусный альдегид; г) метан.

6. Ароматические углеводороды (арены)

Ароматические углеводороды — это углеводороды, в молекулах которых имеется бензольное кольцо или ядро. Общая формула ароматических углеводородов C_nH_{2n-6} . Простейший представитель бензол. Его эмпирическая формула C_6H_6 .

6.1. Строение молекулы бензола

В 1865 г. немецкий химик А.Ф. Кекуле предложил циклическую формулу бензола. Согласно А.Ф. Кекуле молекула бензола представляет собой замкнутый правильный шестигранник (цикл), в котором атомы углерода соединены между собой чередующимися простыми и двойными связями. Кроме того, каждый атом углерода связан с атомом водорода.

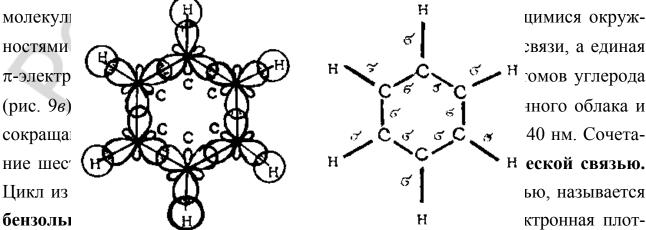
Однако эта формула не объясняет многих свойств бензола. Бензол не проявляет свойства ненасыщенных соединений: он не обесцвечивает бромную воду и раствор перманганата калия. Для бензола более характерны реакции замещения, а не присоединения. Понять это противоречие помогло изучение строения молекулы бензола современными физическими методами.

Было установлено, что молекула бензола имеет циклическое строение, и что все шесть атомов углерода лежат в одной плоскости. Расстояния между центрами соседних атомов углерода в молекуле одинаковы и равны 0,140 нм. Это говорит о том, что в бензоле нет простых и двойных связей.

Электронная теория так объясняет это явление. Все атомы углерода в молекуле бензола находятся в состоянии sp²-гибридизации. Три гибридных электронных облака каждого атома углерода образуют в плоскости кольца две σ-связи с соседними атомами углерода и одну σ-связь с атомом водорода. Углы между этими связями равны 120° (рис. 8). Облако четвертого электрона, которое не участвует в гибридизации, расположено перпендикулярно к плоскости σ-связей. Каждое такое облако одинаково перекрывается с электронными облаками обоих соселних с ним атомов углепола (пис 9а) В проекции на плоскость

цимися окруж-

связи, а единая


омов углерода

ного облака и

40 нм. Сочета-

ью, называется

ктронная плот-

ность распределяется в молекуле равномерно, все связи между атомами углерода оказываются совершенно одинаковыми. Графически это можно изобразить так:

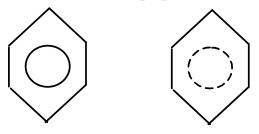
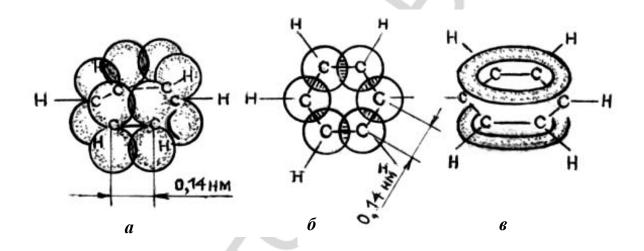



Рис. 8. Схема образования σ-связей в молекуле бензола

Puc.~9.~ Схема образования π -связей в молекуле бензола: a и b — боковое перекрывание облаков р-электронов в двух проекциях; b — распределение электронной плотности молекулярного π -облака над плоскостью и под плоскостью атомных ядер

6.2. Изомерия и номенклатура

При замещении водородных атомов в молекуле бензола различными радикалами образуются гомологи бензола: метилбензол (II), этилбензол (III):

или сокращенно: $C_6H_5-CH_3$, $C_6H_5-C_2H_5$, $C_6H_5-C_3H_7$. Радикал C_6H_5 — называют **фенилом.**

Для гомологов бензола характерна изомерия положения заместителей. Соединения ряда бензола, у которых два заместителя стоят у соседних атомов углерода (положение 1,2), называются орто-соединениями (о-). В мета-соединениях (м-) заместители расположены через один атом углерода (положение 1,3), в пара-соединениях (п-) — через два атома углерода (положение 1, 4). Ниже приводятся формулы трех изомеров ксилола: орто- (I), мета- (II) и пара- (III):

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_4 \\ \text{CH}_5 \\$$

При помощи цифр в названии вещества указывают положение замещающих групп. Например, вышеприведенные формулы соединений могут быть названы так: 1,2-диметилбензол (I), 1,3-деметилбензол (II), 1,4-диметилбензол (III).

Известны ароматические соединения, в боковых цепях которых имеются радикалы непредельных углеводородов. Простейшим представителем таких углеводородов является винилбензол или стирол:

HC =
$$CH_2$$

C

HC

CH

CH

6.3. Получение бензола и его гомологов

В промышленности источниками ароматических углеводородов являются каменный уголь и нефть. Например, бензол и гомологи бензола образуются соответственно из цикллогексана и его производных, находящихся в нефти, при дегидрировании:

$$CH_{2}$$
 CH_{2} CH_{2}

При тех же условиях н-гексан превращается в бензол:

$$H_2C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_5
 CH_5
 CH_6
 CH_7
 CH_8
 CH_8
 CH_8
 CH_8
 CH_8
 CH_8
 CH_9
 CH_9

При пропускании ацетилена при 450–500°C над активированным углем образуется также бензол:

6.4. Физические и химические свойства бензола и его гомологов

Физические свойства. При обычных условиях бензол и большинство ароматических углеводородов — бесцветные жидкости, нерастворимые в воде. Бензол имеет характерный запах, хороший растворитель, сильно токсичен.

Химические свойства бензола. Наиболее характерны для ароматических углеводородов реакции замещения.

1. Реакции замещения

а) Взаимодействие с галогенами в присутствии катализаторов Fe, FeCl₃,

AlCl₃.
$$C_6H_6 + Br_2 \xrightarrow{\text{катализатор}} C_6H_5Br + HBr$$

б) Взаимодействие с азотной кислотой в присутствии серной кислоты как катализатора и водоотнимающего средства:

$$C_6H_6 + HONO_2 \xrightarrow{t^0} C_6H_5NO_2 + H_2O$$

в) Взаимодействие с концентрированной серной кислотой при нагревании. Образуется бензолсульфокислота:

$$C_6H_6 + HOSO_3H \xrightarrow{t} C_6H_5SO_3H + H_2O$$

- **2. Реакции присоединения.** Бензол в особых условиях (высокая температура, давление, катализаторы, облучение ультрафиолетом) проявляет свойства непредельных соединений и может присоединять водород и галогены.
- а) Гидрирование бензола при нагревании и действии катализатора. Образуется циклогексан.

$$HC$$
 CH $+ 3H_2$ H_2C CH_2 CH_2 CH_2 CH_2 CH_2 CH_2

б) Присоединение хлора при действии солнечного света или ультрафиолетовых лучей. Образуется гексахлорциклогексан (гексахлоран).

3. Другие реакции

а) Окисление. При обычных условиях бензол не окисляется. Однако, пары бензола в воздухе и в присутствии катализатора оксида ванадия (V) и при 500°C окисляются до малеинового ангидрида:

$$\begin{array}{c|c}
 & CH - C & O \\
\hline
 & CH - C & O
\end{array}$$

Гомологи бензола окисляются сравнительно легко. Например, при окислении толуола образуется бензойная кислота:

$$CH_3$$
 $+3[O]$ $+H_2O$

б) Горение:

$$2C_6H_6 + 15O_2 \rightarrow 12CO_2 + 6H_2O$$

Взаимное влияние атомов в молекуле толуола

Толуол или метилбензол $C_6H_5CH_3$ нитруется легче бензола. В молекулу толуола можно ввести три нитрогруппы. При этом образуется взрывчатое вещество — 2,4,6-тринитротолуол:

$$\begin{array}{c}
\text{CH}_{3} \\
6 \\
5
\end{array}$$

$$\begin{array}{c}
\text{CH}_{3} \\
\text{O}_{2}\text{N} \\
\text{J}_{1} \\
\text{NO}_{2}
\end{array}$$

$$\begin{array}{c}
\text{O}_{2}\text{N} \\
\text{J}_{1} \\
\text{NO}_{2}
\end{array}$$

$$\begin{array}{c}
\text{NO}_{2} \\
\text{NO}_{2}
\end{array}$$

Большая реакционная способность бензольного ядра в положениях 2,4,6 объясняется влиянием на него радикала — CH_3 . Бензольное ядро тоже влияет на метильный радикал CH_3 • в молекуле толуола. Поэтому метильный радикал CH_3 • в толуоле окисляется раствором перманганата калия $KMnO_4$ и образуется бензойная кислота. Следовательно, метильная группа и бензольное кольцо вза-имно влияют друг на друга.

Применение. Бензол и его гомологи используют для получения нитробензола, хлорбензола, красителей, лекарственных веществ, ядохимикатов, высокомолекулярных соединений.

При продолжительном вдыхании паров бензола происходит нарушение деятельности дыхательных центров и сердца, что может привести к смерти. Толуол более токсичен, чем бензол.

Вопросы и упражнения

- 1. Что такое ароматические углеводороды?
- 2. Какой углеводород является простейшим представителем ароматических углеводородов?
 - 3. Какую формулу бензола предложил Кекуле?
 - 4. Какие свойства бензола не объясняла формула Кекуле?
 - 5. Объясните современные представления о строении молекулы бензола.
- 6. Как образуются химические связи в молекуле бензола? Что такое ароматическая связь?
 - 7. Какая изомерия характерна для гомологов бензола?
- 8. Какие источники получения ароматических углеводородов вы знаете? Напишите уравнения реакций.
 - 9. Напишите уравнения реакций, показывающих сходство бензола:
 - а) с предельными углеводородами;
 - б) с непредельными углеводородами.
 - 10. Напишите уравнения реакций:
 - а) сгорания этилбензола и ксилола;

- б) нитрования бензола и толуола;
- в) окисления толуола перманганатом калия.
- 11. Где применяется бензол и его гомологи?
- 12. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения:
 - a) $CH_4 \rightarrow C_2H_2 \rightarrow C_6H_6 \rightarrow C_6H_5Cl$;
 - **6)** $CaCO_3 \rightarrow CaC_2 \rightarrow C_2H_2 \rightarrow C_2H_4 \rightarrow C_2H_5Cl.$

ЗАДАЧИ

- 1. Сожгли 10,6 г 1,2 диметилбензола. Полученный оксид углерода (IV) пропустили через 80 г раствора с массовой долей NaOH 10 %. Какая масса соли образовалась при этом? (Ответ: 16,8 г)
- 2. К 39 г бензола в присутствии хлорида железа (III) добавили 1 моль брома. Какие вещества и сколько граммов их получилось после реакции? (Ответ: 78,5 г C_6H_5Br ; 40,5 г HBr)
- 3. Определить массу бензола, которую можно получить из ацетилена объемом 44,8 л, если массовая доля выхода бензола от теоретически возможного равна 40 %. (Ответ: 20,8 г)
- 4. Сколько г оксида марганца (IV) взято для получения хлора, которое требуется для превращения 39 г бензола в гексахлорциклогексан? (Ответ: 130,5 г)
- 5. При взаимодействии брома с 78 г бензола была получена такая же масса бромбензола. Найти выход бромбензола (в %). (Ответ: 49,67 %)
- 6. При сгорании толуола образовался газ, который пропустили через раствор гидроксида кальция, взятый в избытке. Образовалось 14 г осадка. Определить массу толуола, которую сожгли. (Ответ: 1,84 г)

Тестовый самоконтроль по теме «Ароматические углеводороды»

1. Какая общая формула соответствует гомологическому ряду аренов:

a)
$$C_nH_{2n}$$
; 6) C_nH_{2n-2} ; b) C_nH_{2n-6} ; Γ) C_nH_{2n+2} ?

Определите, какой из гомологов бензола имеет название 1,4-диметил-2-этилбензол:

15. Укажите физические свойства ароматических углеводородов:
а) хорошие растворители; б) смешиваются с водой;
в) не растворяются в воде; г) очень токсичны.
16. Укажите вещества, которые окисляются раствором перманганата
калия:
а) метан;б) бензол;в) толуол;г) этилен.
17. Укажите вещества, с которыми реагирует бензол:
а) азотная кислота; б) серная кислота;
в) бром; г) водород.
18. Укажите вещества, которые не реагируют с бромной водой:
а) пропен; б) бутен; в) бензол; г) метилбензол.
19. Укажите вещества, которые взаимодействуют с метилбензолом:
а) раствор перманганата калия; б) водород;
в) хлор; г) бромная вода.
20. Бензол превращается в гексахлорциклогенсан, когда:
а) хлор пропускают через бензол;
б) смесь хлора и бензола выдерживают в темноте;
в) хлор встряхивается с бензолом;
г) смесь хлора и бензола подвергают освещению.
21. Укажите вещества, с помощью которых можно отличить гексен от
бензола:
а) щелочной раствор перманганата калия;
б) бромная вода;
в) концентрированная серная кислота;
г) аммиачный раствор хлорида меди (I).
22. Укажите вещества, которые образуются в результате реакции:
$C_6H_5 - CH_3 + 3[O] \xrightarrow{H^+,t^0}$
a) $C_6H_5 - CH_2OH$; 6) $C_6H_5 - CHO$; B) $C_6H_5 - COOH$; r) CO_2 .
23. Укажите реакции, при которых происходит разрыв π -связи в бензоль-
ном ядре:
а) гидрирование этилбензола;
б) нитрование бензола;
в) хлорирование бензола при освещении;
г) окисление толуола раствором перманганата калия.
47

14. Укажите, какие продукты могут образоваться при полимеризации

в) бензол;

г) толуол.

б) дивинилацетилен;

ацетилена:

а) винилацетилен;

- 24. В какие реакции вступает винилбензол (стирол):
 - а) полимеризация;
- **б)** окисление раствором KMnO₄;
- в) с бромной водой;
- г) присоединение хлороводорода?

7. Спирты (алкоголи)

Спирты — это производные углеводородов, которые содержат в молекулах одну или несколько гидроксильных групп – ОН у насыщенных атомов углерода.

$$CH_4 \rightarrow CH_3OH$$

 $C_6H_5CH_3 \rightarrow C_6H_5CH_2OH$

7.1. КЛАССИФИКАЦИЯ И ИЗОМЕРИЯ СПИРТОВ

В зависимости от числа гидроксильных групп спирты делят на одноатомные с общей формулой R – OH (одна гидроксигруппа), двухатомные – $R(OH)_2$ (две гидроксигруппы) и многоатомные – $R(OH)_n$, где n — число гидроксигрупп.

В зависимости от строения углеводородного радикала спирты бывают: предельные алканолы (1) — метанол или метиловый спирт; непредельные — алкенолы (2) — пропен-2-ол-1 или аллиловый спирт и алкинолы (3) — пропин-2-ол-1 или пропаргиловый спирт; ароматические — аренолы (4) — фенилметанол или бензиловый спирт.

CH₃OH (1)
$$CH_2 = CH - CH_2OH$$
 (2) $CH_2 = CH - CH_2OH$ (4)

Для алканолов возможны три типа изомерии: изомерия цепи или изомерия углеродного скелета, изомерия положения гидроксильной группы и межклассовая изомерия.

Например, спирты

являются изомерами по отношению к друг другу, так как имеют различную последовательность атомов углерода в цепи, но имеют общую формулу C_4H_9OH .

По положению гидроксильной группы в молекуле спиртов различают первичные (1), вторичные (2) и третичные (3) спирты. В первичных спиртах атом углерода, у которого находится гидроксильная группа, связан с одним атомом углерода, во вторичных спиртах — с двумя, в третичных — с тремя атомами углерода:

$$R - CH_2OH$$
 (1) $R - CH_2OH$ (2) $R - CH_2OH$ (3)

Одноатомные спирты являются изомерами по отношению к простым эфирам, которые представляют другой класс соединений. Например, бутанол-1 ($CH_3CH_2CH_2CH_2OH$) и диэтиловый эфир ($CH_3CH_2OCH_2CH_3$) — изомеры.

7.2. НОМЕНКЛАТУРА СПИРТОВ

Согласно международной номенклатуре названия спиртов образуются от названий соответствующих углеводородов с добавлением суффикса -ол; цифрой указывают атом углерода, при котором находится гидроксильная группа (табл. 4). Нумерацию углеродных атомов начинают с того конца, к которому ближе гидроксильная группа.

Употребляют также и стандартные названия спиртов: метиловый, этиловый, пропиловый, глицерин и другие.

Таблица 4 Гомологический ряд предельных одноатомных спиртов

Название спирта	Формула	Температура кипения
Метанол (метиловый)	CH₃OH	64,7
Этанол (этиловый)	C ₂ H ₅ OH	78,3
Пропанол-1 (пропиловый)	C ₃ H ₇ OH	97,2
Бутанол-1 (бутиловый)	C ₄ H ₉ OH	117,7
Пентанол-1 (амиловый)	C ₅ H ₁₁ OH	137,8
Гексанол-1 (гексиловый)	C ₆ H ₁₃ OH	157,2
Гептанол-1 (гептиловый)	C ₇ H ₁₅ OH	176,3
Общая формула	$C_nH_{2n+1}OH$	

7.3. ЭЛЕКТРОННОЕ СТРОЕНИЕ СПИРТОВ

Молекулы спиртов — это диполи. Они содержат полярные связи С — H, С — O, О — H. Дипольные моменты связей С \rightarrow O, С \leftarrow H и О \leftarrow H направлены в сторону более электроотрицательных кислорода и углерода. Распределение частично положительных зарядов δ + и частично отрицательных зарядов δ - происходит так:

$$R \xrightarrow{\mathsf{H}} C \xrightarrow{\delta^{+}} O \xrightarrow{\delta^{-}} H$$

$$H$$

Полярность связи O-H больше полярности связи C-H, так как разность электроотрицательностей кислорода и водорода больше, чем разность электроотрицательностей углерода и водорода. Поэтому атом водорода гидроксильной группы более подвижен по сравнению с другими атомами водорода и может замещаться на металл. Полярность связи O-H мала для ее диссоциации с образованием ионов водорода H^+ и спирты являются неэлектролитами.

7.4. Получение спиртов

1. Гидратация алкенов. Путем гидратации этилена в промышленности получают этанол.

$$CH_2 = CH_2 + H_2O \xrightarrow{H_3PO_4,300^{\circ}C} CH_3CH_2OH$$

2. Гидролиз галогеналканов. При действии водного раствора щелочи атом галогена в галогеналкиле замещается гидроксильной группой:

$$C_2H_5Cl + NaOH \xrightarrow{t^0} C_2H_5OH + NaCl$$

3. Специфические способы получения метанола и этанола:

$$CO + 2H_2 \xrightarrow{p,t^0, KaT} CH_3OH$$

Этанол получают при брожении (ферментации глюкозы или крахмала в присутствии дрожжей:

$$C_6H_{12}O_6 \xrightarrow{\varphiepmentii} 2C_2H_5OH + 2CO_2$$

7.5. Физические и химические свойства спиртов

Физические свойства. Молекулы спиртов образуют водородные связи.

В образовании водородных связей принимают участие

атомы водорода и кислорода гидроксильных групп. Поэтому температуры кипения спиртов выше, чем температуры кипения соответствующих алканов.

Четыре низших спирта (табл. 4.) бесцветные, растворимые в воде жидкости и имеют приятный запах. Высшие спирты (начиная с $C_{12}H_{23}OH$) при комнатной температуре — твердые вещества.

Химические свойства

- 1. Одноатомные спирты не обладают ни основными, ни кислотными свойствами. Водные растворы спиртов не изменяют цвет индикаторов.
- 2. Взаимодействие с активными металлами.

$$2CH_3CH_2OH + 2Na \rightarrow 2CH_3 - CH_2 - ONa + H_2 \uparrow$$

Образуется этилат натрия и выделяется водород.

3. В присутствии концентрированной серной кислоты спирты реагируют с кислотами и образуются галогенопроизводные углеводородов.

$$CH_3 - OH + HC1 \xrightarrow{H_2SO_4} CH_3C1 + H_2O$$

4. В присутствии водоотнимающих веществ и при повышенной температуре от молекул спиртов отщепляется вода и образуются непредельные углеводороды:

$$CH_3 - CH_2 - OH \xrightarrow{t>140^{\circ}C \ H_2SO_4\kappa} H_2C = CH_2 + H_2O$$

При избытке спирта и более низкой температуре получаются простые эфиры:

5. Окисление спиртов. При окислении первичных спиртов образуются альдегиды, а при окислении вторичных спиртов – кетоны.

$$CH_3CH_2OH + [O] \xrightarrow{t^0} CH_3-CHO + H_2O$$

$$CH_3CH(OH) - CH_3 + [O] \xrightarrow{t^0} CH_3 - CO - CH_3 + H_2O$$

Этанол горит в воздухе синеватым пламенем

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

При взаимодействии с органическими кислотами образуются сложные эфиры.

7. Спирты можно подвергать реакциям дегидрирования (отщепления водорода) и дегидратации (отщепление воды).

$$2CH_3-CH_2OH \xrightarrow{t,\kappa a T} H_2C = CH - CH = CH_2 + 2H_2O + H_2\uparrow$$

Образуемый при этой реакции бутадиен-1,3 используется для получения полибутадиенового каучука.

Применение. Метанол применяют для получения формальдегида, некоторых красителей и лекарственных веществ.

Этанол применяют как растворитель при получении одеколонов, духов, лекарств, лаков, а также для хранения анатомических препаратов. Он применяется для получения диэтилового эфира, красителей, уксусной кислоты, бездымного пороха.

В медицине этанол применяется как дезинфицирующее средство и средство для компрессов, используется для приготовления экстрактов и настоек.

Метанол очень ядовит: прием внутрь 5–10 мл приводит к слепоте, 30 мл — к смерти.

Систематическое употребление этанола даже в малых дозах приводит к заболеванию – алкоголизму.

7.6. МНОГОАТОМНЫЕ СПИРТЫ

Этиленгликоль-этандиол-1,2 (1) и глицерин-пропантриол-1,2,3 (2) относятся соответственно к двум- и трехатомным предельным спиртам:

Этиленгликоль и глицерин — бесцветные сиропообразные жидкости, сладковатого вкуса, хорошо растворимые в воде. Этиленгликоль — ядовит. Глицерин — гигроскопичен, неядовит, легко усваивается организмом. Подобно одноатомным спиртам они реагируют с активными металлами, галогеноводородами, органическими и неорганическими кислотами.

$$\begin{array}{c} CH_2-OH \\ | \\ CH_2-OH \end{array} +2Na \rightarrow \begin{array}{c} CH_2-ONa \\ | \\ CH_2-ONa \end{array} +H_2 \uparrow$$

$$\begin{array}{c} CH_2-OH \\ | \\ CH_2-OH \end{array} +2HCl \rightarrow \begin{array}{c} CH_2Cl \\ | \\ CH_2Cl \end{array} +2H_2O$$

Присутствие нескольких гидроксильных групп в молекулах многоатомных спиртов увеличивает подвижность и способность к замещению атомов водорода в гидроксильных группах. Например, если к свежеприготовленному гидроксиду меди (II) прилить глицерин, то образуется раствор ярко-синего цвета — глицерат меди. Это качественная реакция на многоатомные спирты. Одноатомные спирты с гидроксидом меди (II) не взаимодействуют.

$$H_{2}C - O - H$$
 $C - O_{1}$
 H
 $H_{2}C - O_{2}$
 H
 $H_{2}C - OH$
 $HO - CH_{2}$
 $HO - CH_{2}$
 $HO - CH_{2}$
 $HC - O_{1}$
 $HC - O_{2}$
 $HC - O_{2}$
 $HC - O_{1}$
 $HC - O_{2}$
 $HC - O_{2}$
 $HC - O_{3}$
 $HC - O_{4}$
 $HC - O_{4}$
 $HC - O_{5}$
 $HC - O_{4}$
 $HC - O_{5}$
 $HC - O_{5}$

Глицерат меди — комплексное соединение (стрелкой показаны химические связи, которые образуются по донорно-акцепторному механизму).

Этиленгликоль применяется для получения лавсана — ценного синтетического волокна и используется для приготовления антифризов — низкозамерзающих жидкостей. В медицине глицерин используется для смягчения кожи рук и приготовления мазей. Кроме того, глицерин применяется для получения синтетических смол и взрывчатых веществ, например, нитроглицерина.

Вопросы и упражнения

1. Какие вещества называются спиртами? Напишите общую формулу гомологического ряда предельных одноатомных спиртов.

- 2. Составьте структурные формулы всех изомерных спиртов, отвечающих формуле $C_5H_{11}OH$. Назовите их.
 - 3. Какие спирты называются:
 - а) первичными; б) вторичными; в) третичными?
- 4. Как делятся спирты в зависимости от числа гидроксильных групп? Напишите формулы одно-, двух- и трехатомных спиртов.
 - 5. Какие типы изомерии возможны для алканолов?
 - 6. Составьте структурные формулы спиртов:
 - **a)** 2-метилбутанола-1; **б)** 3,3 диметилпентанола-2.
- 7. Объясните, почему один из атомов водорода в молекулах одноатомных спиртов является более подвижным.
- 8. Как из пропана можно получить пропанол-1? Составьте уравнения соответствующих реакций.
- 9. Почему температура кипения у спиртов намного выше, чем у соответствующих углеводородов?
- 10. Напишите реакцию взаимодействия метилового спирта с хлороводородом.
- 11. При нагревании смеси этилового и пропилового спиртов с концентрированной серной кислотой образуется смешанный этилпропиловый эфир. Какие еще эфиры могут образоваться при этом? Напишите уравнения реакций.
- 12. Напишите уравнения реакций, с помощью которых пропанол-1 превращается в пропанол-2.
- 13. Как получают метиловый и этиловый спирты? Напишите уравнения реакций.
 - 14. Где применяют метанол и этанол?
 - 15. Каково физиологическое действие спиртов?
 - 16. Что такое этиленгликоль и глицерин?
- 17. Как химическим способом отличить глицерин от этанола? Где применяют глицерин и этиленгликоль?
- 18. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:
 - а) метан \rightarrow хлорметан \rightarrow метанол \rightarrow метанолят натрия;
- **б)** метан \to ацетилен \to этилен \to этанол \to бутадиен-1,3 \to бутан \to бутен-1 \to бутанол-2;
- **в)** карбонат кальция \to карбид кальция \to ацетилен \to этанол \to хлористый этил \to этилен \to этиленгликоль.

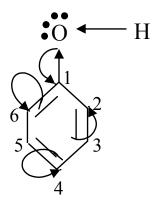
ЗАДАЧИ

- 1. Оксид углерода (IV), который образовался при брожении 100 г раствора глюкозы, пропустили через гидроксид кальция. Образовалось 10 г карбоната кальция. Вычислите массовую долю глюкозы в растворе. (Ответ: 9 %)
- 2. Сколько воздуха по объему необходимо для сжигания 1 л метанола $(\rho=0.80 \text{ г/cm}^3)$? (Ответ: 4 м³)
- 3. Сколько литров раствора этанола с массовой долей его 96 % можно получить из 1000 м 3 этилена (н.у.)? Плотность этанола 0,80 г/см 3 . (Ответ: 2673,9 л)
- 4. Сколько граммов метанола сгорело, если при этом образовался CO_2 объемом 56 л (н.у.)? (Ответ: 80 г)
- 5. Какой максимальный объем водорода (н.у.) может быть выделен натрием из глицерина, взятого в количестве 1 моль? (Ответ: 33,6 л.)
- 6. К 10,5 г этиленового углеводорода прилили 40 г брома. Какова формула спирта, из которого получили этиленовый углеводород? (Ответ: C₃H₇OH)
- 7. Найти молекулярную формулу алканола, если при взаимодействии 13,8 г его с металлическим натрием выделился водород, которого достаточно для гидрирования 3,36 л пропилена. (Ответ: C_2H_5OH)
- 8. При дегидратации 18 г гомолога метанола образовался углеводород и 5,4 г воды. Установите молекулярную массу и формулу спирта. (Ответ: $60 \text{ г/моль}, C_3H_8O$)
- 9. К 16,6 г смеси этанола и пропанола добавили избыток металлического натрия. Выделилось 3,36 л водорода. Определить массовый состав исходной смеси. (Ответ: пропанол 12 г; этанол 4,6 г)

8. Фенолы

Фенолы — это производные ароматических углеводородов, в молекулах которых одна или несколько гидроксильных групп связаны с бензольным ядром.

8.1. НОМЕНКЛАТУРА И ИЗОМЕРИЯ ФЕНОЛОВ


Известны одноатомные фенолы — C_6H_5OH — фенол, $CH_3C_6H_4OH$ — крезолы или гидрокситолуолы; двухатомные фенолы — $C_6H_4(OH)_2$ — дигидроксибензолы; трехатомные фенолы — $C_6H_3(OH)_3$ — тригидроксибензолы. Для фенолов возможна изомерия положения заместителей в бензольном кольце и изомерия боковой цепи. Например: о-крезол (1), м-крезол (2) п-крезол (3); двухатомные фенолы — 1,2 дигидроксибензол (4); 1,3 дигидроксибензол (5), 1,4 дигидроксибензол (6).

OH OH OH

$$(1)$$
 (2)
 (3)
 (3)
 (4)
 (4)
 (5)
 (5)
 (6)
 (6)
 (6)
 (6)
 (6)
 (7)
 (8)
 (1)
 (1)
 (1)
 (2)
 (2)
 (3)
 (3)
 (4)
 (4)
 (5)
 (5)
 (6)
 (6)
 (6)
 (7)
 (8)
 (8)
 (9)
 (9)
 (1)
 (1)
 (1)
 (2)
 (2)
 (3)
 (3)
 (4)
 (4)
 (5)
 (5)
 (6)
 (6)
 (6)
 (7)
 (8)
 (8)
 (8)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (1)
 (1)
 (1)
 (2)
 (2)
 (3)
 (3)
 (4)
 (4)
 (5)
 (5)
 (6)
 (6)
 (6)
 (7)
 (7)
 (8)
 (8)
 (9)
 (9)
 (9)
 (9)
 (9)
 (1)
 (1)
 (1)
 (2)
 (3)
 (4)
 (4)
 (5)
 (5)
 (6)
 (6)
 (6)
 (7)
 (7)
 (8)
 (8)
 (9)
 (9)
 (9)
 (1)
 (1)
 (1)
 (1)
 (2)
 (2)
 (3)
 (3)
 (4)
 (4)
 (5)
 (5)
 (6)
 (6)
 (6)
 (7)
 (7)
 (8)
 (8)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (1)
 (1)
 (1)
 (2)
 (2)
 (3)
 (4)
 (4)
 (5)
 (5)
 (6)
 (6)
 (6)
 (7)
 (7)
 (8)
 (8)
 (8)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (1)
 (1)
 (1)
 (2)
 (2)
 (3)
 (4)
 (4)
 (5)
 (5)
 (6)
 (6)
 (7)
 (7)
 (8)
 (8)
 (8)
 (9)
 (9)
 (9)
 (1)
 (1)
 (1)
 (1)
 (2)
 (2)
 (3)
 (3)
 (4)
 (4)
 (5)
 (5)
 (6)
 (7)
 (8)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (1)
 (1)
 (1)
 (1)
 (2)
 (3)
 (3)
 (4)
 (4)
 (5)
 (5)
 (6)
 (7)
 (8)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (1)
 (1)
 (1)
 (1)
 (2)
 (3)
 (3)
 (4)
 (4)
 (4)
 (5)
 (5)
 (7)
 (8)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (2)
 (2)
 (3)
 (3)
 (3)
 (4)
 (4)
 (4)
 (5)
 (5)
 (5)
 (7)
 (8)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)

8.2. ЭЛЕКТРОННОЕ СТРОЕНИЕ ФЕНОЛА И ЕГО ПОЛУЧЕНИЕ

Электронное строение. Бензольное кольцо в феноле обладает свойством притягивать к себе электроны атома кислорода гидроксильной группы. Смещение неподеленной пары электронов атома кислорода в сторону бензольного кольца увеличивает полярность связи О – Н. Водородный атом становится более подвижным и реакционноспособным. Гидроксильная группа делает атомы водорода более подвижными в положениях 2, 4, 6 бензольного кольца. Таким образом, имеет место взаимное влияние атомов в молекуле фенола. Это взаимное влияние отражается на свойствах фенола.

Получение. Фенол выделяют из каменноугольной смолы при коксовании каменного угля. Разработаны и синтетические методы получения фенола.

8.3. Физические и химические свойства фенола

Физические свойства. Фенол — бесцветное, кристаллическое вещество с характерным запахом. При комнатной температуре плохо растворяется в воде, но при 70°C растворяется в воде в любых соотношениях.

Химические свойства. Обусловлены присутствием в молекуле фенола гидроксильной группы и бензольного кольца.

- 1. Реакции с участием гидроксильной группы.
- **а)** Фенол (1) в водных растворах диссоциирует и образует фенолят-ионы (2).

$$OH \longrightarrow O^- + H^+$$
(1) (2)

Поэтому фенол называют и карболовой кислотой.

б) Взаимодействие со щелочами с образованием фенолятов. Спирты со щелочами не реагируют.

$$\bigcirc - OH + NaOH - \bigcirc - ONa + H_2O$$

в) Взаимодействие с активными металлами с образованием фенолятов.

$$2 \bigcirc -OH + 2Na \longrightarrow 2 \bigcirc -ONa + H_2 \uparrow$$

Феноляты легко разлагаются при действии кислот. Фенол — более слабая кислота, чем угольная.

$$\bigcirc ONa+H_2O+CO_2 \longrightarrow \bigcirc OH+NaHCO_3$$

2. Реакции с участием бензольного кольца.

Реакции замещения в бензольном кольце фенола идут легче, чем у бензола, и в более мягких условиях.

а) Взаимодействие с бромной водой:

$$\bigcirc -OH + 3Br_2 \longrightarrow Br \bigcirc OH + 3HBr$$

$$Br$$

- 2,4,6-трибромфенол плохо растворим в воде и выпадает в осадок, поэтому реакция его образования может служить для обнаружения фенола.
 - б) Нитрование. Образуется пикриновая кислота.

$$O_2N-OH+3HO-NO_2 \xrightarrow{H_2SO_4} O_2N-OH +3H_2O$$

Для качественного определения фенола в водных растворах используют его взаимодействие с хлоридом железа (III) $FeCl_3$. Образуется фиолетовая окраска раствора.

Применение. Фенол применяют для производства фенолформальдегидных пластмасс, красителей, лекарств, взрывчатых веществ и других продуктов. Фенол токсичен, вызывает ожоги кожи и применяется в медицине как антисептик.

Вопросы и упражнения

- 1. Что такое фенолы? Чем фенолы отличаются от ароматических спиртов по химическому строению?
 - 2. Какие типы изомерии известны для фенолов?
 - 3. Напишите формулы одно- и двухатомных фенолов.
 - 4. Объясните взаимное влияние атомов в молекуле фенола.
 - 5. Имеется вещество следующего строения:

$$HO - CH_2OH$$

Как оно будет взаимодействовать:

- а) с натрием; б) с гидроксидом натрия? Напишите уравнения реакций.
- 6. Напишите структурные формулы соединений:
 - **а)** м-нитрофенол; **б)** п-бромфенол; **в)** о-крезол; **г)** 2,6-диметилфенол.
- 7. Напишите уравнения реакций для превращения:

$CaC_2 \rightarrow C_2H_2 \rightarrow C_6H_6 \rightarrow C_6H_5Br \rightarrow C_6H_5OH \rightarrow C_6H_2Br_3OH$

ЗАДАЧИ

- 1. Бромная вода, которая содержит 6 г брома, полностью прореагировала с 23,5 г водного раствора фенола. Определите массовую долю фенола в растворе. (Ответ: 5%)
- 2. При нейтрализации 100 г водного раствора фенола потребовалось 25 мл раствора гидроксида калия с массовой долей его 40 % ($\rho = 1,4$ г/мл). Сколько бромной воды с массовой долей брома 1 % надо прилить к 100 г раствора фенола, чтобы весь фенол прореагировал? (Ответ: 12 кг)
- 3. При действии избытка натрия на смесь этанола и фенола выделилось 6,72 л водорода (н.у.). Для полной нейтрализации этой же смеси потребовалось 25 мл раствора гидроксида калия с его массовой долей 40 % (ρ =1,4 г/мл). Определите состав исходной смеси (в % по массе). (Ответ: 40,6 % C_2H_5OH ; 59,4 % C_6H_5OH)

Тестовый самоконтроль по теме: «Спирты. Фенолы»

1.	Укажите общую	формулу предель:	ных одноатомнь	их спиртов:
	a) $C_nH_{2n+1}OH$;	6) $C_nH_{2n+2}OH$;	B) $C_nH_{2n}OH$;	Γ) $C_nH_{n+1}OH$
2.	Охарактеризуйте	соединение СН3	$-CH(OH) - CH_2$	$-CH_3$:
	а) предельный од	дноатомный спир	г; б) двухатом	ный спирт;
	в) бутанол-1;		г) бутанол-	2.

- 3. В молекуле глицерина содержится:
 - а) три первичные гидроксильные группы;
 - б) три вторичные гидроксильные группы;
 - в) одна первичная и две вторичные гидроксильные группы;
 - г) две первичные и одна вторичная гидроксильная группы.
- 4. Укажите вторичные спирты:
 - а) 2 метил-бутанол-1;b) гексанол-2;c) 2,2-диметилпентанол-3.
- 5. Укажите третичный спирт:
 - а) бутанол-1;б) бутанол-2;в) 2-метилпропанол-2;г) пропанол-1.
- 6. Какие виды изомерии возможны для предельных одноатомных спиртов:

	а) цис-транс-изоме	рия;		
	б) изомерия полож	ения гидроксиль	ной группы;	
	в) изомерия углеро	дного скелета;		
	г) изомерия классу	простых эфиров	3?	
7.	Сколько изомерны	х спиртов отвеча	ет общей форм	уле С4Н9ОН:
	а) 1; б) 2; в	s) 3; г) 4?		
8.	Укажите изомеры:			
	a) CH ₃ CH ₂ OCH ₂ CH	6)	$CH_3-CH_2-CH_2$	₂ –CH ₂ OH;
	B) CH ₃ –CH(OH)–C	$H_2CH_3;$ г)	CH ₃ -OCH ₂ CH ₂	CH_3 .
9.	Укажите ароматиче	еский спирт:		
				$CH_2 - CH_2$
	a) C ₆ H ₅ OH; 6) C ₂	H_5OH ; Γ) C_6H_5O	$CH_2OH;$ B)	
				ОН ОН
10). Укажите способы	промышленного	получения этаг	нола:
	а) гидратация ацет	илена;		
	б) гидратация этил	ена;		
	в) брожение глюко	3Ы.		
	г) гидролиз галоген	алкилов водным	и раствором ще	лочи.
11	 Какие реакции вед 	ут к образованин	о этиленгликол	ія:
	а) окисление этиле	на раствором пер	рманганата кал	ия;
	б) гидратация ацет	илена;		
	в) взаимодействие	1,2-дихлорэтана	с водным расті	вором щелочи;
	г) дегидратация гли	ицерина?		
12	2. Метанол и этанол	растворяются в в	воде благодаря:	
	а) кислой природе;		б) диссоциац	ии воды;
	в) полярной гидрон	сильной группе;	; г) присутств	ию алкильных групп.
13	 Охарактеризуйте с 	войства глицери	на:	
	а) вязкая и бесцвет	ная жидкость;		
	б) хорошо раствори	им в воде;		
	в) имеет сладковат	ый вкус;		
	г) неядовит и легко	усваивается орг	ганизмом.	
14	1. Укажите соедине	ние, которое и	имеет наиболь	шую растворимость
в воде:				
	а) этиленгликоль;	б) бутан; в) бутанол-1;	г) пентанол-1.
15	5. Укажите вещества	, с которыми реа	гирует глицери	ін:
	а) натрий;	б) азотная кисл	лота;	
	в) медь;	г) свежеосажд	енный гидрокс	ид меди.

	образуется при нагревании смеси метанола,
этанола и серной кислоты при темп	пературе ниже 140°С:
a) 1; 6) 2; B) 3;	
17. Укажите вещества, с кот	горыми реагирует этанол при определенных
условиях:	
а) уксусная кислота;	б) азотная кислота;
в) метанол;	г) гидроксид натрия.
18. При взаимодействии с не	которыми веществами этанол образует:
а) сложные эфиры;	б) этилен;
в) ацетальдегид;	г) простые эфиры.
19. Укажите, какие вещества	образуются при нагревании спиртов с кон-
центрированной серной кислотой:	
а) алкоголяты;	б) альдегиды;
в) простые эфиры;	г) этиленовые углеводороды.
20. Укажите области примено	ения этанола:
а) получение бутадиена-1.	,3;
б) получение диэтилового	эфира;
в) дезинфицирующее сред	цство в медицине; г) растворитель.
21. Укажите области примен	ения глицерина:
а) производство взрывчат	ых веществ;
б) приготовление мазей;	
в) для получения синтети	ческого волокна-лавсана; г) топливо.
22. Укажите формулы спирто	DB:
a) CH ₃ –CH(OH)CH ₃ ;	6) CH ₃ –C ₆ H ₄ –OH;
в) С ₆ H ₅ CH ₂ OH;	г) HO–C ₆ H ₄ –OH.
23. Охарактеризуйте свойств	а фенола:
а) бесцветное кристалличе	еское вещество; б) ядовитое вещество;
в) вызывает ожоги кожи;	г) антисептик.
24. Укажите вещества, с кото	рыми реагирует фенол:
а) азотная кислота;	б) бром;
в) бромная вода;	г) карбонат кальция.
25. Укажите вещества, котор	ые реагируют с гидроксидом натрия:
a) CH ₃ OH; 6) C ₆ H ₅ CH ₂	QOH;
в) C ₆ H ₅ OH; г) CH ₃ –C ₆ H	I ₄ -OH.
26. Укажите реакции, в кото	орых проявляются слабокислотные свойства
фенола:	_

а) диссоциация в водных растворах;

- б) гидрирование;
- в) взаимодействие с натрием;
- г) взаимодействие с гидроксидом натрия.
- 27. Бромная вода реагирует с фенолом с образованием:
 - а) бромбензола;
- **б)** 1,2-дибромфенола;
- **в)** 1,3-дибромфенола;
- **г)** 2,4,6-трибромфенола.
- 28. 23 г металлического натрия реагирует с фенолом с образованием:
 - а) одного моль кислорода;
- б) одного моль водорода;
- в) половины моль водорода;
- г) двух моль водорода.
- 29. Для качественного обнаружения фенола используют:
 - а) раствор гидроксида аммония;
- б) бромную воду;
- в) раствор хлорного железа (III);
- г) раствор йода.
- 30. Укажите области применения фенола:
 - а) получение красителей и лекарств;
 - б) получение фенолформальдегидных пластмасс;
 - в) получение уксусного альдегида;
 - г) бактерицидное средство.

9. Альдегиды

Альдегиды — это органические вещества, молекулы которых содержат

функциональную группу атомов
$$-C < 0$$
 H ,

соединенную с углеводородным радикалом. Общая формула предельных (на-

сыщенных) альдегидов
$$C_nH_{2n+1}C
eq H$$

Группа
$$-C -$$
 называется карбонильной группой.

Вещества, содержащие карбонильную группу, связанную с двумя углеводородными радикалами, называются кетонами. Общая формула кетонов:

62

$$\begin{array}{c|c} R-C-R\\ ||\\ O\end{array}$$

Радикалы могут быть одинаковыми и различными.

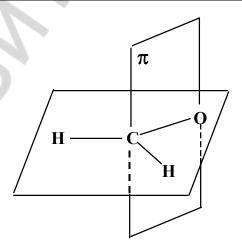
9.1. НОМЕНКЛАТУРА И ИЗОМЕРИЯ АЛЬДЕГИДОВ

Названия альдегидов образуются от названий соответствующих органических кислот, в которые они превращаются при окислении (муравьиный альдегид; уксусный альдегид и т. д.). По международной номенклатуре названия альдегидов образуются от названий соответствующих углеводородов при помощи суффикса -аль. Нумерацию начинают с альдегидной группы. Например:

Альдегиды имеют только одни вид изомерии — изомерия углеродной цепи. Альдегиды изомерны кетонам. Например: CH_3 – CH_2 –CHO (пропаналь) и CH_3 –CO– CH_3 (пропанон или диметилкетон, ацетон) являются изомерами. Они имеют общую формулу C_3H_6O .

Важнейшие альдегиды и их названия даны в таблице 5.

Электронное строение карбонильной группы изображено на рис. 10. Атом углерода карбонильной группы соединен с тремя другими атомами. Он образует с ними σ -связи, которые лежат в одной плоскости и углы между ними 120° . Это означает, что атом углерода карбонильной группы находится в состоянии sp^2 -гибридизации. Негибридизированное облако р-электрона атома углерода и облако р-электрона атома кислорода (другой электрон этого атома участвует в установлении σ -связи C-O) образуют π -связь.


Двойная связь карбонильной группы отличается от двойной связи этиленовых углеводородов. В карбонильной группе электронное облако π-связи смещается в сторону атома кислорода, поэтому атом углерода приобретает частичный положительный, а атом кислорода — частичный отрицательный заряд:

$$R-C$$
 O или R C O

Таблица 5

Гомологический ряд предельных альдегидов

Название альдегида	Формула	Температура кипения (в °C)
Метаналь (муравьиный альдегид, формальдегид)	$H-C \stackrel{\bigcirc O}{=} H$	- 19
Этаналь (уксусный альдегид, ацетальдегид)	CH₃−C OH₃−C H	+ 21
Пропаналь (пропионовый альдегид)	$CH_3-CH_2-C \nearrow O$	+ 50
Бутаналь (масляный альдегид)	CH_3 – CH_2 – CH_2 – C $\stackrel{O}{ }H$	+ 75
Пентаналь (валериановый альдегид)	CH_3 – CH_2 – CH_2 – CH_2 – C	+ 120
Ит. д.		

Рис. 10. Образование σ - и π -связей в карбонильной группе альдегидов

9.2. Получение альдегидов

Общий способ получения альдегидов — это окисление первичных спиртов оксидом меди (II), пероксидом водорода, перманганатом калия и другими окислителями:

$$R-CH_2-OH+[O] \rightarrow R-C < O H +H_2O$$

При каталитическом окислении метанола кислородом воздуха получают метаналь:

$$2CH_3OH + O_2 \xrightarrow{Cu,Ag} 2H - C \xrightarrow{O} H + 2H_2O$$

Метаналь получают и при каталитическом окислении метана:

$$CH_4 + O_2 \xrightarrow{500^{0}C} H - C \stackrel{\frown}{\leqslant} \frac{O}{H} + H_2O$$

Этаналь получают по реакции М.Г. Кучерова:

$$HC \equiv CH + H_2O \xrightarrow{Hg^{2+}} CH_3 - CHO$$

или при каталитическом окислении этилена:

$$2CH_2=CH_2+O_2 \xrightarrow{PdCl_2+CuCl_2} 2CH_3CHO$$

9.3. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА АЛЬДЕГИДОВ

Физические свойства. Из альдегидов (табл. 5) только метаналь — газ, другие альдегиды — жидкости, высшие альдегиды — твердые вещества. Низшие альдегиды имеют резкий запах, высшие альдегиды C_8 — C_{12} — душистые вещества. Начальные члены ряда растворимы в воде, с повышением молекулярной массы растворимость альдегидов уменьшается, высшие альдегиды в воде нерастворимы. Все альдегиды растворяются в органических растворителях.

Альдегиды раздражают слизистые оболочки глаз и верхних дыхательных путей.

Химические свойства.

1. Реакции окисления. Альдегиды легко окисляются до карбоновых кислот с тем же числом углеродных атомов различными окислителями при нагревании:

$$R-C$$
 $\stackrel{O}{\underset{H}{=}} +Ag_2O$ $\stackrel{t^0,NH_4OH}{\longrightarrow} CH_3-C$ $\stackrel{O}{\underset{OH}{=}} +2Ag$ \downarrow (1) $R-C$ $\stackrel{O}{\underset{H}{=}} +2Cu(OH)_2$ $\stackrel{t^0}{\longrightarrow} R-C$ $\stackrel{O}{\underset{OH}{=}} +2CuOH+H_2O$ (2) $\stackrel{C}{\underset{W\in ЛТЫЙ}{=}} Cu_2O+H_2O$ желтый красный

Реакции с аммиачным раствором оксида серебра (I) и гидроксидом меди (II) — качественные реакции на альдегиды. Реакция (1) называется реакцией «серебряного зеркала».

2. Реакции присоединения. Объясняются присутствием в карбонильной группе π-связи, которая легко разрушается. По месту ее разрушения присоединяются атомы и атомные группы

$$H - C \stackrel{O}{\underset{H}{\stackrel{}{\stackrel{}{=}}}} + H_2 \stackrel{Ni(Pt)}{\longrightarrow} CH_3OH$$

$$CH_3 - C \stackrel{O}{\underset{H}{\stackrel{}{\stackrel{}{=}}}} + H_2 \stackrel{Ni(Pt)}{\longrightarrow} CH_3CH_2OH$$

Применение. Метаналь (формальдегид) используется для получения фенолформальдегидной смолы и лекарственных соединений, для дубления кож и серебрения зеркал. Водный раствор формальдегида с массовой долей альдегида 40% называется формалином. Формалин используется для сохранения анатомических препаратов. Этаналь используется для получения уксусной кислоты. Альдегиды с содержанием атомов углерода C_7 — C_{16} применяются в парфюмерии.

Вопросы и упражнения

- Что такое: a) альдегиды; б) кетоны?
- 2. Как распределяются заряды в группе С = О?
- 3. Чем отличается двойная связь карбонильной группы > C = O от двойной связи > C = C < в алкенах?
 - 4. Какие виды изомерии возможны для альдегидов?
- 5. Дайте название по международной номенклатуре следующим альдегидам:

a)
$$CH_3$$
— CH_2 — CH_2 — CH_2 — CH_3

B) CH_3 — CH_2 — CH_2 — CH_3

CH₃
 CH_3 — CH_2 — CH_3 — CH_3 — CH_4 — CH_4 — CH_4 — CH_5
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_3
 CH_5

- 6. Какие вещества образуются при окислении альдегидов?
- 7. Какие вещества образуются при присоединении водорода (гидрировании) к альдегидам?
- 8. Какие реакции используются для качественного определения альдегидов?
 - 9. Что такое формалин и где он применяется?
- 10. Как из этаналя получить в две стадии бромэтан? Напишите уравнения реакций.
- 11. Как можно двумя способами доказать, что в данном растворе содержится альдегид? Напишите уравнения реакций.
 - 12. Как отличить глицерин от альдегида с помощью гидроксида меди (II)?
- 13. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения:

a)
$$Ca \rightarrow CaC_2 \rightarrow HC \equiv CH \rightarrow CH_3 - C \stackrel{O}{\leftarrow}_H$$

- **6)** $C_4H_{10}\rightarrow C_2H_6\rightarrow C_2H_5Cl\rightarrow C_2H_5OH\rightarrow CH_3CHO$
- **B)** $CH_4 \rightarrow HCHO \rightarrow CH_3OH \rightarrow CH_3Cl$
- Γ) $CH_4 \rightarrow C_2H_2 \rightarrow CH_3CHO \rightarrow CH_3CH_2OH \rightarrow CH_3CH_2Br \rightarrow C_2H_4 \rightarrow CH_3CH_2OH \rightarrow CH_3CHO$

ЗАДАЧИ

1. Сколько граммов пропаналя окислится в реакции «серебряного зеркала» при одновременном восстановлении 0,01 моль серебра? (Ответ: 0,29 г)

- 2. Формальдегид, образующийся при окислении 2 моль метанола, растворили в 100 г воды. Какова массовая доля формальдегида в этом растворе? (Ответ: 37,5 %)
- 3. Один литр газообразного органического соединения (н.у.) имеет массу $1,34\,$ г. Массовые доли углерода, водорода и кислорода соответственно равны $40\,\%,\,6,7\,\%$ и $53,3\,\%$. Установите формулу соединения. (Ответ: CH_2O)
- 4. Для каталитического гидрирования 17,8 г смеси метаналя и этаналя до спиртов потребовалось 11,2 л водорода. Определить массовую долю альдегидов в смеси. (Ответ: метаналь 50,56 %; этаналь 49,44 %)
- 5. При взаимодействии 1,74 г смеси этаналя и пентаналя с избытком аммиачного раствора оксида серебра образовалось 6,48 г металлического серебра. Определить массовую долю альдегидов в смеси (в %). (Ответ: метаналь 50,57 %; пентаналь 49,43 %)
- 6. Сколько килограммов этаналя можно получить по методу М.Г. Кучерова из 900 кг технического карбида кальция, если примеси в нем составляют 10 %? Выход этаналя равен 80 % от рассчитанного по уравнению реакции. (Ответ: 445,5 кг)

10. Карбоновые кислоты

Карбоновые кислоты — это органические вещества, молекулы которых содержат одну или несколько карбоксильных групп

соединенных с углеводородным радикалом. В зависимости от числа карбоксильных групп в молекуле различают кислоты одноосновные, двухосновные и т. д. Ряд одноосновных предельных карбоновых кислот приведен в таблице 6. К двухосновной предельной кислоте относится щавелевая кислота НООС–СООН. В зависимости от природы радикала в кислоте кислоты классифицируют на предельные, непредельные и ароматические. Предельные монокарбоновые (одноосновные) кислоты имеют общую формулу

$$C_nH_{2n+1}$$
 C $\nearrow O$ OH

10.1. НОМЕНКЛАТУРА И ИЗОМЕРИЯ

По международной номенклатуре названия кислот образуют от названий соответствующих углеводородов с присвоением окончания -овая и слова «кислота». Например: метановая кислота Н–СООН, этановая кислота СН $_3$ –СООН и т. д. (см. табл. 5). Употребляют и другие названия кислот (например, муравьиная, уксусная и т. д.). Предельные одноосновные кислоты имеют изомерию углеродной цепи и изомерны сложным эфирам карбоновых кислот (межклассовая изомерия), СН $_3$ СООН и НСООСН $_3$ — изомеры. Они имеют общую формулу С $_2$ Н $_4$ О $_2$.

Таблица 6 Важнейшие одноосновные предельные кислоты

Название кислоты	Формула	Температура кипения (в °C)
Метановая или муравьиновая	H – COOH	101
Этановая или уксусная	CH ₃ – COOH	118
Пропановая или пропионовая	$CH_3 - CH_2 - COOH$	141
Бутановая или масляная	$CH_3 - CH_2 - CH_2 - COOH$	163
Пентановая или валериановая	CH ₃ -CH ₂ -CH ₂ -COOH	186
Гексановая или капроновая	$CH_3 - (CH_2)_4 - COOH$	205
Гептановая или энантовая	$CH_3 - (CH_2)_5 - COOH$	223
Гексадекановая или пальмитиновая	$CH_3 - (CH_2)_{14} - COOH$	TDOD HI IO
Гептадекановая или маргариновая	$CH_3 - (CH_2)_{15} - COOH$	твердые
Октадекановая или стеариновая	$CH_3 - (CH_2)_{16} - COOH$	вещества

Электронное строение. Карбоксильная группа:

$$R-C \xrightarrow{\delta+} O \xrightarrow{\delta-} O \leftarrow H$$

состоит из карбонильной группы > C=0 и гидроксильной - ОН. Атом углерода карбонильной группы имеет частично положительный заряд, так как электроны смещены к атому кислорода. Положительно заряженный атом углерода притягивает электроны от атома кислорода гидроксильной группы. Атом кислорода этой группы притягивает к себе электронное облако атома водорода. Это увеличивает полярность связи O-H по сравнению со спиртами и уменьшает положительный заряд на атоме углерода карбонильной группы кислот по сравнению с альдегидами. Поэтому кислоты в отличие от спиртов диссоциируют с образованием ионов водорода H^+ и для кислот не характерны реакции присоединения по двойной связи > C=O в отличие от альдегидов.

10.2. Получение кислот

Муравьиную кислоту получают нагреванием под давлением гидроксида натрия с оксидом углерода (II) с последующей обработкой формиата натрия серной кислотой

NaOH + CO
$$\xrightarrow{t^0,P}$$
 HCOONa
2HCOONa + H_2SO_4 \rightarrow 2HCOOH + Na_2SO_4

Уксусную кислоту получают при окислении этанола под действием бактерий $CH_3CH_2OH + O_2 \rightarrow CH_3COOH + H_2O$

Для химической промышленности уксусную кислоту получают различными методами:

1. Окисление уксусного альдегида

$$2CH_3CHO + O_2 \rightarrow 2CH_3COOH$$

2. Окисление бутана кислородом воздуха

$$2CH_3CH_2CH_2CH_3 + 5O_2 \rightarrow 4CH_3COOH + 2H_2O$$

3. Синтезом из метанола и оксида углерода (II)

$$CH_3OH + CO \xrightarrow{t^0, KaT} CH_3COOH$$

10.3. Физические и химические свойства кислот

Физические свойства. Низшие карбоновые кислоты C_1 — C_9 — жидкости с острым запахом и хорошо растворяются в воде. С увеличением относительной молекулярной массы растворимость кислот в воде уменьшается, а температуры кипения повышаются.

В твердом и жидком состояниях между молекулами предельных карбоновых кислот образуются водородные связи

$$R-C \stackrel{\bigcirc{}_{}^{}}{\sim} O \bullet \bullet \bullet H-O \subset C-R$$
 циклический димер

Водородная связь в кислотах сильнее, чем в спиртах, поэтому температуры кипения кислот больше температур кипения соответствующих спиртов.

Химические свойства

1. Диссоциация. Растворимые в воде кислоты имеют кислый вкус, окрашивают лакмус в красный цвет. В водных растворах происходит их диссоциация с образованием иона водорода и карбоксилат-иона

$$R - COOH \longrightarrow R - COO^- + H^+$$

Карбоновые кислоты являются слабыми кислотами. Наиболее сильной в гомологическом ряду предельных кислот является муравьиная. В гомологическом ряду кислот их сила уменьшается с ростом числа атомов углерода в молекуле.

2. Образование солей. Карбоновые кислоты взаимодействуют с активными металлами, с основными оксидами, со щелочами, с аммиаком или гидроксидом аммония, с солями более слабых кислот

$$2CH_{3}COOH + Mg \rightarrow (CH_{3}COO)_{2}Mg + H_{2}$$

$$2CH_{3}COOH + MgO \rightarrow (CH_{3}COO)_{2}Mg + H_{2}O$$

$$CH_{3}COOH + NaOH \rightarrow CH_{3}COONa + H_{2}O$$

$$CH_{3}COOH + NH_{3} \rightarrow CH_{3}COONH_{4}$$

$$CH_{3}COOH + NH_{4}OH \rightarrow CH_{3}COONH_{4} + H_{2}O$$

$$2CH_{3}COOH + Na_{2}CO_{3} \rightarrow 2CH_{3}COONa + CO_{2} \uparrow + H_{2}O$$

$$CH_{3}COOH + NaHCO_{3} \rightarrow CH_{3}COONa + CO_{2} \uparrow + H_{2}O$$

Взаимодействие со спиртами с образованием сложных эфиров (реакция этерификации):

$$CH_3 - C$$
 O
 $+ H_2O - C_2H_5$
 $H_2SO_{4 \text{ KOHIL}}$
 $CH_3 - C$
 OC_2H_5
 $+ H_2O$

3. Взаимодействие по углеводородному радикалу. Водород в углеводородном радикале, особенно ближайший к карбоксильной группе, замещается галогенами: CH_3 – $COOH + Cl_2 \rightarrow ClCH_2COOH + HCl$ CH_3 – $COOH + Br_2 \rightarrow BrCH_2COOH + HBr$

Под влиянием атомов галогена степень диссоциации кислот сильно повышается, потому что сильнее оттягиваются электроны от кислорода гидроксигруппы.

При отщеплении воды от органических кислот образуются ангидриды:

$$CH_{3}-C \bigcirc O \\ CH_{3}-C \bigcirc O \\ CH_{4}-C \bigcirc O \\ CH_{$$

Ангидрид уксусной кислоты (уксусный ангидрид)

Особенности строения и свойств муравьиной кислоты

Муравьиная кислота по химическим свойствам несколько отличается от других карбоновых кислот. Карбоксильная группа в муравьиной кислоте соединяется с атомом водорода и поэтому в ее формуле можно выделить карбоксильную (1) и альдегидную группы (2):

$$H = C = \begin{pmatrix} O \\ O - H \end{pmatrix} \qquad H = O - C = \begin{pmatrix} O \\ H \end{pmatrix} \qquad (2)$$

Поэтому, кроме свойств кислот, муравьиная кислота проявляет и свойства альдегидов. Как и альдегиды, муравьиная кислота легко окисляется аммиачным раствором оксида серебра (реакция «серебряного зеркала») и гидроксидом меди:

HCOOH + Ag₂O
$$\xrightarrow{t^0}$$
 2Ag \downarrow + CO₂ + H₂O
HCOOH + 2Cu(OH)₂ $\xrightarrow{t^0}$ CO₂↑ + 3H₂O + Cu₂O \downarrow

При слабом нагревании с концентрированной серной кислотой муравьиная кислота дегидратируется и образуется оксид углерода (II).

$$H - COOH \xrightarrow{H_2SO_4, KOHIL} CO + H_2O$$

Пальмитиновая и стеариновая кислоты. Эти кислоты в виде сложных эфиров глицерина входят в состав растительных и животных жиров. Формулы этих кислот приведены в таблице 6. Они представляют собой твердые вещества белого цвета, нерастворимые в воде. Для этих кислот характерны те же реакции, что и для других карбоновых кислот. Например, при взаимодействии с растворами щелочи или карбоната натрия они образуют соли.

$$C_{15}H_{31}COOH + NaOH \rightarrow C_{15}H_{31}COONa + H_2O$$

$$2C_{17}H_{35}COOH + Na_2CO_3 \rightarrow 2C_{17}H_{35}COONa + H_2O + CO_2$$

Натриевые соли этих кислот (пальмитаты и стеараты) растворимы в воде. Они обладают моющим действием и составляют основную часть обычного твердого мыла.

Калиевые и аммонийные соли образуют жидкое мыло, часто использующееся в медицине. Из карбоновых солей, содержащихся в мыле, можно снова получить кислоты, действия на их водный раствор сильной кислотой. Например:

$$2C_{17}H_{35}COONa + H_2SO_4 \rightarrow 2C_{17}H_{35}COOH + Na_2SO_4$$

В жесткой воде, содержащей ионы Ca^{2+} и Mg^{2+} , образуются кальциевые и магниевые соли высших карбоновых кислот. Образованием этих солей, выпадающих в осадок, объясняется, почему мыло утрачивает моющее действие в такой воде.

Олеиновая кислота. Есть кислоты, в составе которых между атомами углерода содержится одна или несколько двойных связей. Гомологический ряд непредельных кислот с одной двойной связью начинается акриловой (пропеновой) кислотой $CH_2 = CH - COOH$, которую можно рассматривать как производное пропилена. Наряду с пальмитиновой и стеариновой кислотами в состав жиров в виде сложного эфира глицерина входит и олеиновая кислота. $C_{17}H_{33}COOH$ или $CH_3-(CH_2)_7-CH = CH-(CH_2)_7-COOH$. В молекуле олеиновой кислоты в середине цепи имеется двойная связь. Поэтому она по месту двойной связи присоединяет бром и водород. Олеиновая кислота дает характерные реакции для кислот и непредельных соединений. Олеиновая кислота — жидкость, которая легко окисляется на воздухе.

Применение. Муравьиная кислота применяется в химической промышленности как восстановитель при синтезе органических веществ; в пищевой промышленности — как дезинфицирующее и консервирующее средство; в текстильной промышленности — для протравы и крашения тканей.

Уксусная кислота применяется при синтезе красителей, для получения пластмасс, лекарств (например, аспирина, фенацетина), негорючей кинопленки, в пищевой промышленности.

Вопросы и упражнения

- 1. Что такое карбоновые кислоты?
- 2. Какой вид изомерии характерен для предельных монокарбоновых кислот?
- 3. Почему для карбонильной группы в карбоновых кислотах не характерны реакции присоединения?
 - 4. Напишите уравнения реакций получения:
 - а) муравьиной кислоты;
- б) уксусной кислоты.
- 5. Каковы физические свойства предельных карбоновых кислот?

6. Назовите по международной номенклатуре соединения:

- 7. Напишите уравнения реакций муравьиной кислоты:
 - а) с цинком; б) с гидроксидом натрия; в) с карбонатом натрия.
- 8. Напишите уравнения реакций окисления альдегидов:
 - а) муравьиного; б) уксусного;
 - в) пропионового до соответствующих кислот.
- 9. Составьте уравнения реакций, при помощи которых можно получить карбоновые кислоты:
- а) взаимодействие солей карбоновых кислот с концентрированной серной кислотой;
 - б) окисление альдегидов;
 - в) окисление спиртов;
 - г) каталитическое окисление предельных углеводородов.
- 10. Этилен можно использовать для получения уксусной кислоты. Напишите уравнения соответствующих реакций.
- 11. Напишите уравнения реакций в молекулярной, полной и сокращенной ионной формах между:
 - а) натриевой солью пальмитиновой кислоты и гидроксидом кальция;
 - б) калиевой солью стеариновой кислоты и хлоридом магния;
 - 12. Напишите уравнения реакций взаимодействия олеиновой кислоты:
 - а) с водородом;
- **б)** бромом;
- **в)** водой;

- г) бромоводородом;
- д) натрием;
- е) с гидроксидом натрия.

Назовите полученные вещества.

13. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения:

$$C_2H_6 \rightarrow C_2H_5Br \rightarrow C_2H_5OH \rightarrow CH_3CHO \rightarrow CH_3COOH$$

14. Для чего применяется: а) муравьиная кислота; б) уксусная кислота?

ЗАДАЧИ

- 1. Какую массу раствора уксусной кислоты с массовой долей 90 % можно получить при окислении 5,6 л бутана кислородом воздуха? Выход кислоты равен 60 %. (Ответ: 20 г)
- 2. К 24,4 г смеси уксусной и муравьиной кислот прилили 227,3 мл гидроксида натрия с массовой долей 10 % и плотностью 1,1 г/мл. Для поглощения избытка щелочи потребовалось 2,8 л сернистого газа до образования кислой соли. Определите количественный состав исходной смеси кислот (в %). (Ответ: CH₃COOH 24,6 %; HCOOH 75,4 %)
- 3. Определите формулу органической одноосновной кислоты, если на нейтрализацию этой кислоты массой 28,8 г требуется 101,7 мл раствора гидроксида калия с массовой долей КОН 22,4 % и плотностью 1,18 г/мл. (Ответ: CH₃COOH)
- 4. При окислении 37 г первичного спирта получено 44 г одноосновной карбоновой кислоты. Эта кислота имеет такое же число углеродных атомов, что и исходный спирт. Определите формулу кислоты. (Ответ: C₃H₇COOH)
- 5. При окислении метаналя, который содержится в 0,75 г формалина с массовой долей формальдегида 40 %, избытком аммиачного раствора оксида серебра, образовалось 224 мл (н.у.) углекислого газа. Какая масса серебра выпала в осадок? (Ответ: 4,32 г)
- 6. Какую массу уксусного ангидрида надо растворить в 500 г водного раствора уксусной кислоты с ее массовой долей 95 % для получения безводной кислоты? (Ответ: 141,67 г)
- 7. Какую массу уксусного ангидрида надо растворить в 74,5 г воды, чтобы образовался раствор уксусной кислоты с массовой долей 30 %? (Ответ: 25,5 г)

Тестовый самоконтроль по теме: «Альдегиды. Карбоновые кислоты»

- 1. Укажите вещество пропаналь:
 - a) CH₃–CHO
- **6)** HCHO
- B) CH₃CH₂CHO

r) CH₃–CH–CHO | CH₃

2. Какой альдегид образуется при окислении спирта

CH₃–CH–CH₂CH₂OH | CH₃

а) н-бутаналь;

б) 2-метилпентаналь;

в) 3-метилбутаналь;

г) 2 метилбутаналь?

- 3. Ацетальдегид в промышленности получают:
 - а) дегидратацией этанола;
 - б) гидратацией этилена;
 - в) гидратацией ацетилена в присутствии солей ртути;
- г) окислением этилена кислородом в присутствии хлоридов палладия и мели.
 - 4. При взаимодействии пропаналя с гидроксидом меди (II) образуется:

a) C_3H_7OH ;

6) C₂H₅COOH;

B) CH₃COOH;

- Γ) C₂H₅OH.
- 5. Укажите кислоту, которая относится к гомологическому ряду кислот с общей формулой $C_nH_{2n+1}COOH$:

a) $CH_3(CH_2)_{16}COOH$;

6) $CH_2 = CH - COOH$;

B) C₁₇H₃₃COOH;

- Γ) C₆H₅COOH.
- 6. Укажите двухосновную кислоту:

а) уксусная;

б) пальмитиновая;

в) щавелевая;

- г) валерьяновая.
- 7. В молекуле какого вещества имеется одна двойная связь:

a) C_8H_{14} ;

6) C₁₅H₃₁COOH;

B) C₁₇H₃₃COOH;

- **Γ)** C₁₇H₃₅COOH.
- 8. Какие пары веществ являются изомерами:
 - а) метанол и диметиловый эфир;
 - б) пропаналь и ацетон;
 - в) бутановая кислота и этилацетат;
 - г) этанол и метилэтиловый эфир?
- 9. Укажите вещество, которое является изомером уксусной кислоты:

a) CH₃CH₂COOH;

6) HOCH₂OCH₃;

B) $HOCH_2 - CHO$;

- r) ClCH₂COOH.
- 10. Какие виды изомерии характерны для предельных карбоновых одноосновных кислот:
 - а) углеродного скелета;
- б) положение функциональной группы;
- в) цис- и транс-изомерия; г) межклассовая изомерия?
- 11. Укажите соединения, у которых есть карбонильная группа:

в) пропановая кислота,	Г) этаналь.			
12. Укажите изомеры н-пентановой	кислоты:			
а) 2-метилпентановая кислота;	б) 2,2-диметилпропановая кислота;			
в) пентаналь;	г) 2-метилбутановая кислота.			
13. Какие реакции ведут к образова	нию муравьиной кислоты:			
а) действие серной кислоты на ф	а) действие серной кислоты на формиат натрия;			
б) окисление метанола;	б) окисление метанола;			
в) гидратация ацетилена;				
г) окисление муравьиного альден	гида?			
14. Укажите способы получения уко	14. Укажите способы получения уксусной кислоты:			
а) окисление уксусного альдегида;				
б) окисление бутана кислородом воздуха в присутствии катализатора;				
в) гидратация этилена;				
г) гидратация ацетилена.				
15. Укажите ряд веществ, в которо	м температура кипения увеличивается			
слева направо:				
a) этан \rightarrow этанол \rightarrow этаналь \rightarrow этановая кислота;				
б) этан \rightarrow этаналь \rightarrow этанол \rightarrow этан	б) этан \rightarrow этаналь \rightarrow этанол \rightarrow этановая кислота;			
в) этаналь \to этан \to этанол \to этан	овая кислота;			
г) этан→этаналь→этановая кисл	ота→этанол.			
16. Укажите, какие соединения являются газами при нормальных условиях:				
а) метан;	б) метанол;			
в) метаналь;	г) метановая кислота?			
17. Укажите кислоту с наибольшей	степенью диссоциации:			
a) CCl ₃ –CH ₂ CH ₂ COOH;	б) CH ₃ –CHCl–COOH;			
B) CH ₂ FCH ₂ COOH;	r) CH ₂ F–COOH.			
18. Какие вещества образуются пр	и взаимодействии карбоновых кислот			
со спиртами:				
а) соли;б) простые эфиры;	в) оксиды; г) сложные эфиры?			
19. Укажите самую слабую кислоту	·:			
a) CH ₃ COOH; 6) C ₆ H ₅ COOH;	B) ClCH ₂ COOH; r) Cl ₂ CHCOOH.			
20. Какие кислоты могут вступать в	реакцию этерификации:			
а) соляная;б) муравьин	ная;			
в) азотная; г) аминоукс	сусная?			
21. Укажите соединения, с которы	ми реагирует муравьиная кислота при			
определенных условиях:				

б) ацетон;

а) метанол;

в) этанол;	г) медь.		
22. Укажите, к какому классу	соединений относятся мыла:		
а) соли высших карбоновы	х кислот; б) сложные эфиры;		
в) простые эфиры;	г) амины.		
23. Укажите химические свой	ства олеиновой кислоты:		
а) участвует в реакциях присоединения;			
б) реагирует с основаниями;			
в) образует сложные эфиры;			
г) легко окисляется.			
24. Укажите вещества, которы	в взаимодействуют с олеиновой кислотой:		
а) бромная вода;	б) глицерин;		
в) водород;	г) этанол.		
25. Основную часть твердого мыла составляют:			
а) стеарат натрия;	б) пальмитат натрия;		
в) стеарат магния;	г) стеарат кальция.		
26. Укажите формулы жидкого мыла:			
a) C ₁₇ H ₃₅ COOK;	6) C ₁₇ H ₃₅ COONa;		
в) CH ₃ COONa;	Γ) C ₁₇ H ₃₅ COONH ₄ .		
27. Какие реакции позволяют отличить муравьиную кислоту от уксусной:			
а) реакция «серебряного зеркала»;			
б) реакция с гидроксидом меди (II) при нагревании;			
в) реакция с гидроксидом натрия;			
г) реакция с карбонатом на	трия?		
28. Укажите вещества, котор	ые способны образовывать межмолекуляр-		
ные водородные связи:			
а) метан;б) метанол;в	в) уксусная кислота; г) вода.		
	оторых кислотные свойства более сильные		
чем у уксусной кислоты:			
а) бромуксусная кислота;	· ·		
	г) муравьиная кислота.		
30. Укажите области примене			
•	ть; б) синтез красителей;		
в) получение аспирина;	г) получение негорючей кинопленки.		

а) гидроксид меди (II);

б) амиачный раствор оксида серебра (I);

11. Сложные эфиры

Сложные эфиры — это вещества, которые образуются при взаимодействии органических или кислородсодержащих неорганических кислот со спиртами (реакция этерификации).

$$R-C$$
 $\stackrel{O}{<}_{OH}$ $HO-R_1$ \longrightarrow $R-C$ $\stackrel{O}{<}_{OR_1}$ $+H_2O$

Реакция происходит в присутствии ионов водорода Н как катализаторов.

Общая формула сложных эфиров одноатомных спиртов и многокарбоновых кислот

$$R-C \stackrel{\text{\tiny O}}{\sim} OR_1$$

где R и R₁ — углеводородные радикалы.

11.1. НОМЕНКЛАТУРА И ИЗОМЕРИЯ

Названия сложных эфиров образуются из названий соответствующих кислот и спиртов, например:

$$H-C < O \\ OCH_3$$

Метиловый эфир муравьиной кислоты (муравьинометиловый эфир, метилформиат, метилметаноат)

$$CH_3 - C \leq \frac{O}{OC_2H_5}$$

Этиловый эфир уксусной кислоты (уксусноэтиловый эфир, этилацетат, этилэтаноат)

Сложные эфиры изомерны одноосновным карбоновым кислотам (межклассовая изомерия) или другим сложным эфирам (структурная изомерия)

$$CH_3C < O$$
 — пропилацетат (1) $OCH_2-CH_2-CH_3$

$$C_2H_5 \begin{picture}(2){c} O \\ OC_2H_5 \end{picture}$$

$$CH_3$$
– CH_2 – CH_2 – CH_2 – C O — н-пентановая кислота (3)

Соединения 1,2 и 3 — изомеры. Они имеют общую формулу $C_5H_{10}O_2$.

11.2. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА СЛОЖНЫХ ЭФИРОВ

Физические свойства. Сложные эфиры одноосновных карбоновых кислот — бесцветные, легкокипящие жидкости с запахом фруктов и цветов; высшие сложные эфиры — воскообразные вещества (пчелиный воск). Сложные эфиры в воде растворяются плохо.

Химические свойства. Важнейшим химическим свойством сложных эфиров является взаимодействие их с водой — гидролиз.

$$CH_3 - C$$
 O OC_2H_5 OC_2H_5

В результате гидролиза образуются уксусная кислота и этанол. Эта реакция противоположна реакции этерификации. Ионы водорода катализируют и прямую и обратную реакции.

Простые эфиры гидролизу не подвергаются.

Применение. Синтетические сложные эфиры в виде фруктовых эссенций используются в производстве фруктовых вод, кондитерских изделий, при изготовлении духов и одеколонов. Некоторые сложные эфиры применяются как растворители (этилацетат).

Сложный эфир азотистой кислоты и изоамилового спирта (изоамилнитрит) C_5H_{11} –O–N=O применяется в медицине как средство, расширяющее кровеносные сосуды.

Вопросы и упражнения

- 1. Что такое сложные эфиры?
- 2. Что такое реакция этерификации?
- 3. Какие виды изомерии характерны для сложных эфиров карбоновых кислот?
 - 4. Что такое гидролиз сложных эфиров?
 - 5. Где используются сложные эфиры?
 - 6. Составьте уравнения реакций этерификации между:
 - а) уксусной кислотой и 2-метилбутанолом-1;
 - б) масляной кислотой и пропанолом-1.
 - 7. Дайте названия следующим эфирам:
 - **a)** HCOOC₃H₇; **6)** CH₃CH₂COOC₂H₅.

Задачи

- 1. При взаимодействии смеси уксусной и муравьиной кислот с 23 мл абсолютного этанола (плотность 0.8 г/мл) образовалось 32.4 г смеси сложных эфиров. Определите содержание кислот в смеси (в %). (Ответ: $CH_3COOH 56.6$ %, HCOOH 43.4 %)
- 2. Сколько г этилацетата можно получить из 30 г уксусной кислоты и 46 г этанола, если выход эфира равен 85 % от теории? (Ответ: 37,4 г)
- 3. 26,4 г изопропилового эфира муравьиной кислоты гидролизовали 420 мл раствора гидроксида натрия с массовой долей его 5 % и плотностью 1,05 г/мл. Какая масса щелочи осталась после реакции? (Ответ: 10 г)
- 4. Найти молекулярную формулу сложного эфира, если для гидролиза (омыления) 12 г этого эфира требуется 80 г раствора гидроксида натрия с мас-

совой долей его 10 %. (Ответ:
$$H - C < O \\ OCH_3$$

12. Жиры (триглицериды)

Жиры — это сложные эфиры трехатомного спирта глицерина и высших карбоновых кислот. Общая формула жиров:

$$\begin{array}{c|c} H_2C-O-C & \nearrow O \\ \hline & & \\ & & \\ H-C-O-C & \nearrow O \\ \hline & & \\ OR_2 \\ \hline & & \\ H_2C-O-C & \nearrow O \\ \hline & & \\ OR_3 \end{array}$$

где R_1 , R_2 , R_3 – углеводородные радикалы (одинаковые или разные), содержат от 3 до 25 атомов углерода.

Жиры относятся к классу сложных эфиров.

Сложные эфиры — это животные жиры и растительные масла. У животных жиры содержатся в подкожной ткани и в молоке, у растений — в плодах и зернах. Природные жиры являются смешанными триглицеридами, в их состав входят радикалы различных жирных кислот. Например:

$$H_2C - O - CO - C_{15}H_{31}$$
 $HC - O - CO - C_{17}H_{35}$
 I
 $H_2C - O - CO - C_{17}H_{35}$

Кроме триглицеридов в состав природных жиров входят различные примеси, свободные жирные кислоты, моно- и диглицериды, витамины и др.

12.1. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА ЖИРОВ

Физические свойства. Жиры бывают твердые и жидкие. Твердые образованы предельными жирными кислотами стеариновой $C_{17}H_{35}COOH$, пальмитиновой $C_{15}H_{31}COOH$. Жидкие жиры образованы непредельными жирными кислотами олеиновой $C_{17}H_{33}COOH$, линолевой $C_{17}H_{31}COOH$ и линоленовой $C_{17}H_{29}COOH$.

Большинство жиров животного происхождения — твердые вещества (говяжий, бараний). Многие жиры растительного происхождения, называемые маслами, — жидкие вещества (кукурузное, оливковое, соевое, подсолнечное). Жиры в воде не растворяются, но хорошо растворяются в органических растворителях. Жиры не имеют строго определенной температуры плавления из-за своего непостоянного состава.

Химические свойства. Твердые жиры — малоактивные вещества, но жидкие жиры, содержащие непредельные кислоты, способны вступать в реакции присоединения (реакции гидрирования).

При гидрировании растительного масла в промышленности получают твердое вещество маргарин.

В организме под влиянием ферментов жиры гидролизуются на глицерин и кислоты. Глицерин и кислоты образуются в результате водного гидролиза.

Водный гидролиз проводят при высоких температурах и давлениях. Щелочной гидролиз (омыление) жиров проводят под действием щелочей. Образуются глицерин и соли высших карбоновых кислот (мыла):

Природные жиры при хранении на воздухе портятся, т.к. под действием кислорода воздуха находящиеся в их составе непредельные кислоты окисляются с образованием альдегидов и кетонов.

Применение. Выделяют жиры из природного сырья растений и животных. Жиры в основном применяют в пищу. При окислении жиров в организме выделяется значительно больше энергии, чем при окислении углеводов и белков.

Жиры используются для производства мыла, глицерина, карбоновых кислот, в фармацевтической и косметической промышленности.

Вопросы и упражнения

- 1. К какому классу соединений относятся жиры?
- 2. Какое существует различие в строении твердых и жидких жиров?
- 3. Напишите структурную формулу сложного эфира, образованного глицерином с масляной, олеиновой и стеариновой кислотами.
 - 4. Каковы химические свойства жиров?
- 5. Напишите уравнения водного и щелочного гидролиза тристеарата глицерина.
 - 6. Для каких целей применяют жиры?

Задачи

1. При гидрировании двойной связи в кислоте, которая образовалась при гидролизе триолеата глицерина, израсходовали 13,44 л водорода (н.у.) Сколько граммов жира было взято для гидролиза? (Ответ: 176,8 г жира)

- 2. Сколько тонн мыла получится при щелочном гидролизе 2 тонн глицерида стеариновой кислоты? Выход продуктов гидролиза равен 85 % от теоретического. (Ответ: 1,75 т)
- 3. 6,38 г твердого жира нагрели с 9,5 мл раствора гидроксида калия с массовой долей его 25 % и плотностью 1,18 г/мл. Избыток щелочи нейтрализовали 13,4 мл соляной кислоты с массовой долей ее 5 % и плотностью 1,09 г/мл. Рассчитайте относительную молекулярную массу жира. (Ответ: 638 г/моль)

Тестовый самоконтроль по теме: «Сложные эфиры. Жиры»

- 1. Укажите соединения, которые являются изомерами по отношению к друг другу:
 - а) спирты и простые эфиры;
- б) альдегиды и кетоны;
- в) карбоновыя кислоты и сложные эфиры;
- г) карбоновые кислоты и простые эфиры.
- 2. Укажите формулы сложных эфиров:

a)CH₃-C-CH₃ **6)**CH₃C
$$\bigcirc$$
 O \bigcirc CH₃C \bigcirc O \bigcirc O \bigcirc CH₃C \bigcirc O \bigcirc O \bigcirc CH₃C \bigcirc O \bigcirc O \bigcirc O \bigcirc O \bigcirc CH₃C \bigcirc O \bigcirc

- 3. К какому классу соединений относится тринитроглицерин:
 - а) к сложным эфирам;
- б) к нитросоединениям;

в) к жирам;

- г) к глицератам?
- 4. Какая реакция лежит в основе получения сложных эфиров:
 - а) гидратации;
- б) этерификации;
- в) дегидратации;
- г) дегидрогенизации?
- 5. Какой продукт образуется при взаимодействии этанола с пропионовой кислотой в присутствии концентрированной серной кислоты:
 - а) пропаналь;
- б) этилпропионат;
- в) пропионовый ангидрид; г) этилпропионовый эфир?
- 6. Укажите продукты, которые образуются при щелочном гидролизе пропилового эфира пропионовой кислоты:
 - **а)** C₂H₅COOH и C₃H₇ONa; **б)** C₂H₅COONa и C₃H₇OH;
 - в) C_2H_5COOH и C_3H_7OH ; г) C_2H_5COONa и C_3H_7ONa .

- 7. Укажите вещество, которое применяется для превращения жидкого жира в твердый:
 - **а)** кислород; **б)** кислота; **в)** спирт; г) водород.
 - 8. Укажите, где применяются сложные эфиры:
 - а) в производстве фруктовых вод;
 - б) при изготовлении духов и одеколонов;
 - в) растворители; г) как топливо.
 - 9. Укажите кислоты, которые образуют твердые жиры:
 - а) линолевая; б) пальмитиновая; в) стеариновая; г) олеиновая.
 - 10. Укажите химические реакции, в которые вступают жидкие жиры:
 - а) гидрирование;
- **б)** гидролиз;
- в) окисление;
- г) реакция этерификации.

13. Углеводы. Классификация углеводов

Углеводы — это большая группа природных соединений. Они играют важную роль в жизни человека, животных и растений. Состав большинства углеводов выражается формулой $C_n(H_2O)_m$. Эта формула показывает, что углеводы состоят из углерода и воды.

Углеводы делят на три группы. Моносахариды, дисахариды и полисахариды. Моносахариды — это простейшие углеводы, которые не могут гидролизоваться с образованием более простых углеводов.

При гидролизе дисахаридов образуются две молекулы моносахаридов. Полисахариды состоят из большого числа моносахаридов, на которые полисахариды разлагаются при гидролизе.

Моносахариды с альдегидной группой называются альдозами, с кетогруппой — кетозами. Альдоза, содержащая пять атомов углерода в молекуле, называется альдопентозой; кетоза, содержащая шесть атомов углерода в молекуле, называется кетогексозой и т. д. Наибольшее значение имеют гексозы и пентозы.

13.1. Строение молекулы глюкозы

Химическое строение молекулы глюкозы выражается формулой:

Как видно из формулы, глюкоза содержит гидроксильные группы и альдегидную группу. Поэтому глюкоза — это альдегидоспирт.

В водном растворе молекула глюкозы может перейти из одной формы — альдегидной (цепочечной) — в другую — циклическую. Это происходит вследствие того, что гидроксильная группа пятого углеродного атома может приблизиться к альдегидной группе. В последней под влиянием гидроксильной группы разрывается π -связь. К свободной связи присоединяется атом водорода и образуется шестичленное кольцо, в котором альдегидная группа отсутствует:

Процесс превращения альдегидной формы в циклическую обратим. В растворе существует равновесие между ними. Гидроксильная группа, которая образуется у первого углеродного атома вместо альдегидной, называется полуацетальным гидроксилом. Полуацетальный гидроксил более реакционно-способный, чем другие гидроксилы. Полуацетальный гидроксил может занимать различное положение относительно плоскости молекулы. Циклическая форма, в которой полуацетальный гидроксил находится под плоскостью кольца молекулы, называется α -формой (1). В β -форме (2) глюкозы полуацетальный гидроксил находится над плоскостью кольца молекулы.

Между альдегидной, α - и β -формами глюкозы устанавливается равновесие с преобладанием β формы:

Получение. В промышленности глюкозу получают гидролизом крахмала и целлюлозы. В природе глюкоза образуется в процессе фотосинтеза:

$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2 + Q$$

13.2. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА ГЛЮКОЗЫ

Физические свойства. Глюкоза — белое кристаллическое вещество, сладкая на вкус, хорошо растворима в воде.

Химические свойства. Глюкоза имеет химические свойства, характерные для спиртов и альдегидов.

- 1. Реакции с участием альдегидной группы
- а) Глюкоза дает реакцию серебряного зеркала:

$$CH_{2}OH-(CHOH)_{4}-C \begin{tabular}{l} \begin{t$$

б) При кипячении глюкоза окисляется гидроксидом меди (II) в глюконовую кислоту и выпадает красный осадок оксида меди (I):

$$CH_2OH_-(CHOH)_4-CHO+2Cu(OH)_2\rightarrow CH_2OH_-(CHOH)_4COOH+Cu_2O\downarrow +2H_2O$$

в) Под действием водорода глюкоза превращается в шестиатомный спирт сорбит:

$$CH_2OH - (CHOH)_4 - CHO + H_2 \rightarrow CH_2OH - (CHOH)_4 - CH_2OH$$

- 2. Реакции с участием гидроксильных групп
- а) Глюкоза взаимодействует с Cu(OH)₂ с образованием глюконата меди (II):

б) Глюкоза взаимодействует с карбоновыми кислотами с образованием сложных эфиров:

$$CH_2OH - (CHOH)_4 - CHO + 5CH_3COOH \rightarrow CH_2(OCOCH_3) - (CHOCOCH_3)_4 - CHO + 5H_2OH_2OH_3 - (CHOCOCH_3)_4 - CHO + 5H_2OH_3 - (CHOCOCH_3)_4 - CHO + 5H_3OH_3 - (CHOCOCH_3)_4 - CHOCOCH_3 - (CHOCOCH_3)_4 - CHOCOCH_3 - (CHOCOCH_3)_4 -$$

- 3. Особые реакции глюкозы:
- а) Спиртовое брожение в присутствии ферментов дрожжей:

$$C_6H_{12}O_6 \rightarrow 2CH_3CH_2OH + 2CO_2$$

б) Молочнокислое брожение в присутствии ферментов:

$$C_6H_{12}O_6 \rightarrow 2CH_3CH(OH)COOH$$

Образуется молочная кислота.

в) Окисление. В организмах человека и животных глюкоза окисляется, в результате чего выделяется энергия, необходимая для жизнедеятельности. Поэтому глюкоза является источником энергии для клеточных реакций.

$$C_6H_{12}O_6 + 6O_2 \rightarrow CO_2 + 6H_2O + Q$$

Применение. Глюкозу применяют в медицине для внутривенных инъекций, в пищевой промышленности, в производстве зеркал и игрушек (серебрение).

13.3. ФРУКТОЗА

Фруктоза — изомер глюкозы, является кетоспиртом и имеет молекулярную формулу $C_6H_{12}O_6$ как и глюкоза. Строение ее молекулы выражается формулой: CH_2OH-C –(CHOH)₃– CH_2OH

Содержится во фруктах и меде. Фруктоза слаще глюкозы в три раза. Как и глюкоза, фруктоза существует в циклических формах.

13.4. Рибоза и дезоксирибоза

Рибоза (1) и дезоксирибоза (2) входят в состав нуклеиновых кислот. Их формулы:

$$CH_2OH-CH(OH)-CH(OH)-CH(OH)-C < \begin{matrix} O \\ H \end{matrix}$$
 (1)

$$CH_2OH-CH(OH)-CH(OH)-CH_2-C < O$$
 (2)

В составе нуклеиновых кислот рибоза и дезоксирибоза находятся в циклической форме.

Эти пентозы по своим химическим свойствам подобны глюкозе: окисляются в кислоты, восстанавливаются в многоатомные спирты.

Вопросы и упражнения

- 1. Что такое углеводы?
- 2. На какие группы делятся углеводы?
- 3. Что такое: а) моносахариды; б) дисахариды; в) полисахариды?
- 4. Что такое: **a)** альдозы; **б)** кетозы?
- 5. Как можно доказать присутствие в молекуле глюкозы гидроксильных групп и альдегидной группы?
 - 6. Какой гидроксил называется полуацетальным гидроксилом?
 - 7. Какие циклические формы глюкозы имеются в растворе?
- 8. С помощью каких реакций можно отличить раствор глюкозы от раствора фруктозы? Напишите уравнения реакций.
 - 9. Какова роль глюкозы в жизнедеятельности человека и животных?
 - 10. Напишите формулы пентоз: рибозы и дезоксирибозы.

ЗАДАЧИ

- 1. При спиртовом брожении 150 г водного раствора глюкозы выделилось 2,24 л (н.у.) газа. Рассчитайте массовую долю спирта в полученном растворе и массовую долю глюкозы в исходном растворе. Глюкоза прореагировала полностью. (Ответ: 3,16 % и 6 %)
- 2. Рассчитать, сколько граммов серебра можно получить при взаимодействии 18 г глюкозы с аммиачным раствором оксида серебра (I), если выход продукта реакции 75 %. (Ответ: 16,2 г)
- 3. Какой объем газа выделится при спиртовом брожении 18 г глюкозы, если процесс протекает на 75 %? (Ответ: 3,36 л)
- 4. При брожении раствора глюкозы с массовой долей 10 % выделилось столько же газа, сколько его образуется при полном сгорании 35 мл этанола (ρ=0,8 г/мл). Вычислите массу этого раствора глюкозы. (Ответ: 1095,6 г)

13.5. ДИСАХАРИДЫ

Дисахариды образуются при отщеплении воды от двух молекул гексоз. Наиболее важными из дисахаридов являются сахароза, мальтоза и лактоза. Все они имеют одну и ту же эмпирическую формулу $C_{12}H_{22}O_{11}$ и являются изомерами.

CAXAPO3A

Строение. Молекула сахарозы состоит из остатков глюкозы и фруктозы, соединенных между собой атомом кислорода:

В молекуле сахарозы нет ни альдегидной группы, ни полуацетального гидроксила, но имеются гидроксильные группы.

Получение. Сахароза содержится во многих растениях, но особенно ее много в сахарной свекле и в сахарном тростнике. Из этих растений сахарозу и получают.

Физические свойства. Сахароза — это обычный сахар. Это кристаллическое белое вещество сладкого вкуса, очень хорошо растворяется в воде. Температура плавления сахарозы 160°С. При охлаждении расплавленной сахарозы она превращается в аморфную прозрачную массу-карамель.

Химические свойства. В присутствии разбавленных минеральных кислот и при нагревании происходит гидролиз сахарозы. В результате гидролиза образуются глюкоза и фруктоза.

$$C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$$

Сахароза легко взаимодействует с гидроксидами металлов, образуя растворы сахаратов. В отличие от глюкозы сахароза не дает реакции «серебряного зеркала», не восстанавливается другими восстановителями.

Изомеры сахарозы — мальтоза и лактоза. Мальтоза состоит из двух остатков глюкозы; лактоза — из остатков глюкозы и галактозы.

Применение. Сахароза применяется в основном в пищевой промышленности.

Вопросы и упражнения

- 1. Как отличить растворы глюкозы и сахарозы, находящиеся в разных пробирках?
- 2. Напишите уравнения реакций, при помощи которых сахарозу можно превратить в этанол.

- 3. Сколько глюкозы и фруктозы:
 - **а)** в молях;
 - б) в граммах можно получить при гидролизе 5 моль сахарозы?

ЗАДАЧА

Какая масса сахарозы потребуется для гидролиза, чтобы из образовавшейся глюкозы получить 54 г молочной кислоты при выходе ее 60 %? (Ответ: 171 г)

ТЕСТОВЫЙ САМОКОНТРОЛЬ ПО ТЕМЕ: «УГЛЕВОДЫ. МОНОСАХАРИДЫ»

- 1. Укажите общую формулу углеводов:
 - a) $C_nH_{2n+1}OH$;
- **6)** $C_n(H_2O)_m$;
- **B)** $C_nH_{2n+1}CHO$;
- Γ) $C_nH_{2n+1}COOH$.
- 2. Охарактеризуйте химическое строение глюкозы:
 - а) гексоза;
 - б) альдегидоспирт;
 - в) в циклической форме присутствует полуацетальный гидроксил;
 - г) в растворе устанавливается равновесие между α- и β-формами.
- 3. Какие вещества являются изомерами по отношению к друг другу:
 - а) глюкоза и мальтоза;
- б) глюкоза и фруктоза;
- в) сахароза и мальтоза;
- г) сахароза и лактоза?
- 4. Укажите процессы, ведущие к образованию глюкозы:
 - а) гидролиз крахмала;
- б) гидролиз сахарозы;
- в) фотосинтез;
- г) гидролиз целлюлозы.
- 5. Какие продукты образуются при окислении глюкозы аммиачным раствором оксида серебра:
 - а) глюконовая кислота и вода;
 - б) глюконовая кислота и металлическое серебро;
 - в) многоатомный спирт и вода;
 - г) фруктоза и вода?
- 6. Укажите группы веществ, которые дают реакцию «серебряного зеркала»:
 - а) глюкоза, глицерин, этиленгликоль;
 - б) глицерин, глюкоза, сахароза;
 - в) глюкоза, формальдегид, метановая кислота;
 - г) глюкоза, молочная кислота, фруктоза.

- 7. Укажите вещество, которое можно использовать для обнаружения глицерина, ацетальдегида, уксусной кислоты и глюкозы:
 - а) гидроксид меди (II);
- б) оксид серебра;

в) водород;

- г) гидроксид натрия.
- 8. При действии ферментов глюкоза подвергается:
 - а) гидролизу;

б) гидрированию;

в) брожению;

- г) дегидратации.
- 9. Охарактеризуйте химическое строение фруктозы:
 - **а)** пентоза;
- б) имеется карбонильная группа в молекуле;
- в) кетоноспирт;
- г) имеются гидроксильные группы.
- 10. Охарактеризуйте свойства сахарозы:
 - а) сладкий вкус;
 - б) растворима в воде;
 - в) в воде распадается на ионы;
 - г) при нагревании в присутствии кислот идет гидролиз.

13.6. ПОЛИСАХАРИДЫ

Молекулы полисахаридов состоят из большого числа остатков гексоз (мономеров). Остатки гексоз связаны между собой в длинные цепи различной длины. Эти цепи имеют разную молекулярную массу. Полисахариды имеют общую молекулярную формулу $(C_6H_{10}O_5)_n$, где n — число гексоз. При гидролизе полисахаридов образуются дисахариды или моносахариды. Важнейшие полисахариды — крахмал, целлюлоза (клетчатка).

КРАХМАЛ

Строение. Макромолекулы крахмала состоят из остатков молекул циклической α-глюкозы.

Макромолекулы крахмала различаются по строению: наряду с линейными молекулами с молекулярной массой в несколько сотен тысяч (амилоза) имеются молекулы разветвленного строения, молекулярная масса которых достигает нескольких миллионов (амилопектин).

Получение. Получают крахмал чаще всего из картофеля, риса и кукурузы.

Физические свойства. Крахмал — белый аморфный порошок. Практически нерастворим в холодной воде, но получены водорастворимые формы крахмала. В горячей воде крахмал образует коллоидный раствор, который при охлаждении превращается в клейстер.

Химические свойства.

- 1. Нагревание. Крахмал не имеет определенной температуры плавления и при нагревании разлагается на декстрин и другие продукты.
- 2. Взаимодействие с йодом. Крахмал дает характерное синее окрашивание с йодом. Это позволяет обнаруживать крахмал в пищевых продуктах.
- 3. Гидролиз. При нагревании с водой в присутствии кислоты или при действии ферментов крахмал легко подвергается гидролизу.

$$(C_6H_{10}O_5)_n \to (C_6H_{10}O_5)_m \to xC_{12}H_{22}O_{11} \to nC_6H_{12}O_6$$
 крахмал \to декстрины \to мальтоза \to глюкоза

Применение. Крахмал применяется в производстве антибиотиков, витаминов, колбас, кондитерских изделий, в фармации и медицине, для накрахмаливания белья. В промышленности крахмал перерабатывают в этиловый спирт, глюкозу, декстрины и другие вещества.

В организме крахмал гидролизуется до глюкозы.

ЦЕЛЛЮЛОЗА

Строение. Макромолекулы целлюлозы состоят из остатков молекул β -глюкозы и имеют только линейное строение. Макромолекулы целлюлозы располагаются в одном направлении и образуют волокна (лен, хлопок, конопля). В каждом остатке молекулы глюкозы содержатся три гидроксильные группы, что выражается формулой [$C_6H_7O_2(OH)_3$] $_n$. Общее число остатков глюкозы в макромолекуле целлюлозы равно примерно 6000–12000, что соответствует относительной молекулярной массе 1–2 миллиона.

Получение. Целлюлоза — основная составная часть оболочки растительных клеток. До 98 % целлюлозы содержится в хлопке, в древесине — около 50 %. Вата — это почти чистая целлюлоза и представляет собой очищенный хлопок. Основную массу целлюлозы получают из древесины.

Физические свойства. Целлюлоза — белое волокнистое вещество, нерастворимое в воде и органических растворителях. Не имеет ни вкуса, ни запаха.

Химические свойства

1. Гидролиз. При нагревании с разбавленной серной кислотой под давлением целлюлоза превращается в глюкозу.

$$(C_6H_{10}O_5)_n + nH_2O \xrightarrow{H_2SO_4} nC_6H_{12}O_6$$

2. Реакция этерификации. При взаимодействии целлюлозы с азотной кислотой в присутствии концентрированной серной кислоты образуются сложные эфиры -моно-, ди- и тринитратцеллюлозы:

$$[C_6H_7O_2(ONO_2)(OH)_2]_n$$
; $[C_6H_7O_2(ONO_2)_2(OH)]_n$; $[C_6H_7O_2(ONO_2)_3]_n$

Нитраты целлюлозы — горючие вещества. Тринитрат целлюлозы (пироксилин) — сильно взрывчатое вещество.

Взаимодействует целлюлоза и с органическими кислотами:

$$[C_6H_7O_2\ (OH)_3]_n + 3nCH_3COOH \xrightarrow{\ H_2SO_4\ } [C_6H_7O_2(OCOCH_3)_3]_n + 3nH_2O$$

Обычно образуется смесь моно-, ди- и триацетатов целлюлозы:

$$[C_6H_7O_2(OCOCH_3)(OH)_2]_n$$
; $[C_6H_7O_2(OCOCH_3)_2(OH)]_n$; $[C_6H_7O_2(OCOCH_3)_3]_n$

Диацетат и триацетатцеллюлоза используются для получения искусственного ацетатного волокна.

3. Горение (полное окисление)

$$(C_6H_{10}O_5)_n + 6nO_2 \xrightarrow{t^0} 6nCO_2 + 5nH_2O$$

4. Термическое разложение целлюлозы без доступа воздуха. В зависимости от температуры разложения образуются древесный уголь, вода, метан, метанол, уксусная кислота, ацетон и другие продукты.

Применение. Целлюлоза в виде древесины используется в строительстве, в быту. Большое количество целлюлозы перерабатывается на бумагу, этанол, вату, простые и сложные эфиры. Простые и сложные эфиры целлюлозы применяются в различных отраслях промышленности и в медицине.

Вопросы и упражнения

1. Что такое полисахариды? Напишите общую молекулярную формулу полисахаридов.

- 2. В чем отличие крахмала от целлюлозы?
- 3. Сколько звеньев $C_6H_{10}O_5$ содержится в макромолекуле целлюлозы:
 - а) льняного волокна ($M_r = 5900000$);
 - **б)** хлопкового волокна ($M_r = 1750000$)?
- 4. Напишите уравнения реакций получения:
 - а) динитрата целлюлозы; б) диацетата целлюлозы.
- 5. Напишите уравнения реакций для превращений: крахмал \rightarrow глюкоза \rightarrow этанол \rightarrow оксид углерода (IV) \rightarrow гидрокарбонат натрия Залачи
- 1. Одна тонна картофеля содержит 20% крахмала. При брожении из одной тонны картофеля получено 100 л спирта (ρ=0,8 г/мл). Определите выход этанола. (Ответ: 70,43 %)
- 2. После кислотного гидролиза 10 г целлюлозы получили 5,2 г глюкозы. Сколько процентов это составляет от теоретически рассчитанного количества? (Ответ: 46,85 %)
- 3. 3 тонны древесины содержит 55 % целлюлозы по массе. Определите, какую массу триацетата целлюлозы можно получить из этой древесины, если выход продукта составляет 60 % от теоретически возможного. (Ответ: 1,76 т)

Тестовый самоконтроль по теме: «Углеводы. Полисахариды»

- 1. Укажите вещества, которые относятся к углеводам:
 - **а)** крахмал; **б)** целлюлоз
- **б)** целлюлоза; **в)** сахароза;
- 2. Крахмал можно получить:
 - а) из картофеля;б) др
 - б) древесины;
- в) кукурузы;
- г) из риса.
- 3. Укажите углеводы, которые построены только из остатков молекул глюкозы:
 - 4. Охарактеризуйте строение целлюлозы:
 - а) природный полисахарид;
- б) имеет линейное строение;

г) спирты.

г) сахароза.

- в) состоит из остатков β-глюкозы; г) имеет разветвленное строение.
- 5. Укажите общее химическое свойство дисахаридов и полисахаридов:
 - а) брожение;

а) целлюлоза;

б) гидролиз;

б) крахмал;

- в) гидрирование;
- г) окисление.
- 6. Укажите конечный продукт гидролиза крахмала:
 - а) декстрины;
- **б)** мальтоза;
- в) глюкоза;

в) мальтоза;

- г) сахароза.
- 7. При взаимодействии целлюлозы с азотной кислотой образуется:
 - а) сложный эфир;
- б) нитросоединение;
- в) простой эфир;
- г) аминосоединение.

- 8. Какие соединения образуют красный осадок при нагревании с гидроксидом меди (II):
 - **a)** сахароза; **б)** целлюлоза; **в)** глюкоза; **г)** этаналь?
 - 9. Какие вещества вступают в реакцию этерификации:
 - а) целлюлоза; б) фруктоза; в) пропаналь; г) крахмал?
- 10. Определите число структурных звеньев в макромолекуле целлюлозы, если ее относительная молекулярная масса равна 2,5 миллионов:
 - **а)** 1540; **б)** 13900; **в)** 15432; г) 30864.

14. Амины

Амины — это производные аммиака (NH₃), в молекуле которого один, два или три атома водорода замещены углеводородными радикалами. Например: метиламин (1), диметиламин (2), триметиламин (3)

$$CH_3-N$$
 H
 CH_3
 CH_3

По числу атомов водорода в аммиаке, замещенных на углеводородный радикал, различают первичные (1), вторичные (2) и третичные (3) амины. В зависимости от природы углеводородного радикала различают алифатические, алициклические, ароматические и гетероциклические амины.

Номенклатура и изомерия. Названия аминов образуются от названий радикалов и слова амин, например, метиламин CH_3NH_2 , триметиламин $(CH_3)_3N$, метилэтиламин $C_2H_5NHCH_3$. Названия более сложных аминов образуются от названий соответствующих алканов: например, $H_3C-CH(NH_2)-CH_3$ называется 2-аминопропан.

Изомерия аминов характеризуется изомерией углеводородного радикала (изомерия цепи) и положением аминогруппы в молекуле (изомерия положения), например, 1-аминобутан CH_3 – CH_2 – CH_2 – CH_2 – CH_2 – NH_2 и 2-аминобутан CH_3 – $CH(NH_2)$ С H_2 – CH_3 .

Физические свойства. Метиламин, диметиламин и триметиламин — газообразные вещества, все остальные амины — жидкости или бесцветные кристаллические вещества. Низшие амины растворимы в воде и имеют запах аммиака. С увеличением молекулярной массы растворимость аминов в воде уменьшается.

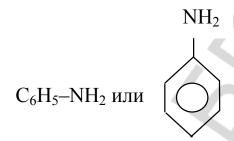
Химические свойства. В молекулах аминов, как и в молекуле аммиака, атом азота имеет одну неподеленную пару электронов. В водном растворе и в присутствии кислот эта электронная пара взаимодействует с положительно заряженным ионом водорода и присоединяет его:

Поэтому растворы аминов в воде имеют щелочную реакцию. Они изменяют цвет индикаторов: фенолфталеина — в малиновый, лакмуса — в синий.

Однако, по сравнению с аммиаком амины — более сильные основания. Это объясняется тем, что в молекуле метиламина CH_3 – NH_2 к атому азота сдвинуты электронные облака от атомов водорода метильной группы и от двух атомов водорода непосредственно:

$$\begin{array}{cccc} H & & H & H \\ \downarrow & & \downarrow & \\ H \rightarrow N & & H \rightarrow C \rightarrow N \\ \uparrow & & H & H \end{array}$$

В результате атом азота в молекуле метиламина приобретает больший по значению отрицательный заряд, чем атом азота в молекуле аммиака. Благодаря


избыточному отрицательному заряду атом азота в молекулах аминов сильнее притягивает к себе протоны, чем в молекуле аммиака.

Органические амины горят на воздухе.

$$4CH_3-NH_2 + 9O_2 \rightarrow 4CO_2 + 10H_2O + 2N_2$$

14.1. Анилин

Анилин — простейший представитель первичных ароматических аминов:

Получение. Анилин и другие первичные ароматические амины получают восстановлением нитросоединений

$$C_6H_5NO_2 + 6H \xrightarrow{\text{катализатгор, } t^0} C_6H_5NH_2 + 2H_2O$$

Эта реакция известна как реакция Зинина.

Физические свойства. Анилин — бесцветная маслянистая жидкость с характерным запахом, мало растворим в воде и сильно ядовит. На воздухе быстро окисляется.

Химические свойства. Анилин реагирует с кислотами с образованием солей, но цвет лакмуса не изменяет. Это объясняется тем, что бензольное ядро оттягивает свободную электронную пару от атома азота аминогруппы. Поэтому электронная плотность на атоме азота в молекуле анилина уменьшается, и он слабее притягивает к себе протоны. В этом случае основные свойства анилина проявляются слабее по сравнению с предельным алифатическим амином метиламином CH_3 — NH_2 .

$$C_6H_5 \leftarrow : NH_2 + H_2O \Longrightarrow [C_6H_5NH_3]^+OH^-$$
 гидроксид фениламмония $C_6H_5 \leftarrow : NH_2 + HCl \rightarrow [C_6H_5NH_3]^+Cl^-$ или $C_6H_5NH_2 \cdot HCl$

хлорид фениламмония (или солянокислый анилин)

 $[C_6H_5NH_3]Cl^-$ хорошо растворим в воде. При действии на него щелочи анилин выделяется в свободном виде.

$$[C_6H_5NH_3]Cl^- + NaOH \rightarrow C_6H_5NH_2 + NaCl + H_2O$$

Атомы водорода бензольного ядра анилина легко замещаются галогенами. При действии бромной воды на водный раствор анилина выделяется белый осадок 2,4,6 триброманилина.

Применение. Анилин применяется для получения анилиновых красителей, лекарств, взрывчатых веществ, анилиноформальдегидных смол.

Вопросы и упражнения

- 1. Что такое амины?
- 2. Напишите формулы всех изомеров аминопропана.
- 3. Напишите структурные формулы аминов:
 - **а)** 3-аминопентан;
- **б)** 1,5 диаминогексан;
- в) 2,3 диаминобутан;
- г) 3-амино-4метилгексан.
- 4. Объясните, почему у диметиламина основные свойства сильнее, чем у метиламина.
 - 5. Напишите уравнения реакций для превращений:

$$CH_4 \rightarrow CH_3NO_2 \rightarrow CH_3NH_2 \rightarrow [CH_3NH_3]Cl \rightarrow CH_3NH_2 \rightarrow N_2$$

- 6. Объясните, почему ароматические амины имеют более слабые основные свойства, чем предельные алифатические амины.
- 7. Какое соединение дифениламин $(C_6H_5)_2NH$ или фениламин $C_6H_5NH_2$ имеет более сильные основные свойства?
 - 8. Как получить анилин из карбида кальция? Напишите уравнения реакций.
 - 9. Укажите химические способы разделения смеси бензола и анилина.

Задачи

- 1. 26,8 г раствора соляной кислоты с массовой долей хлористого водорода потребовалось для нейтрализации 10 г технического водного раствора диметиламина. Определите массовую долю амина в техническом растворе. (Ответ: 33 %)
- 2. Полученная соль первичного амина при взаимодействии с хлороводородом содержит 43,48 % хлора. Определите молекулярную формулу амина. Какой объем (н.у.) азота образуется при сжигании 9 г этого амина? (Ответ: $C_2H_5NH_2$, 2,24 π)

- 3. 10 л смеси этана, метана и метиламина пропустили через избыток соляной кислоты с массовой долей НС1 10 %. Объем смеси при этом уменьшился в 1,25 раза. Определите состав смеси, если известно, что на сжигание 1 л ее пошло 30 л (н.у.) кислорода. (Ответ: этан 6,33 л; метан — 1,67 л; метиламин — 2 л)
- 4. При восстановлении 7,7 г нитробензола было получено некоторое количество анилина. При обработке одной сотой части полученного анилина избытком бромной воды образовалось 0,165 г осадка. Определите выход анилина от теоретического. (Ответ: 80 %)
- 5 Определите ΜЛ o, a

3.	определите, какую массу анилина можно получить из 200 мл				
(ρ=0,88	г/мл) бензола. Выход нитробензола равен 80 % от теоретического, а				
выход а	нилина — 75 % от теоретического. (Ответ: 125,9 г)				
1	Тестовый самоконтроль по теме: «Амины»				
1.	Укажите соединения, относящиеся к классу аминов:				
_	a) CH_3CONH_2 ; 6) $C_3H_7NH_2$; B) $HOOCCH_2NH_2$; r) $C_6H_{11}NH_2$.				
2.	Сколько аминов соответствует составу С ₃ H ₉ N:				
	a) 2; б) 3; в) 4; г) 5?				
3.	3. У какого из веществ основные свойства выражены сильнее:				
	а) метиламин; б) диметиламин; в) триметиламин; г) этиламин?				
4.	4. Укажите, какое из веществ лучше всех растворяется в воде:				
	a) $C_6H_5NH_2$; 6) CH_3NH_2 ; B) NH_3 ; r) NH_4Cl .				
5.	Какова плотность метиламина по водороду:				
	a) 75; b) 9,2; г) 31?				
6.	б. Укажите одинаковые свойства аммиака и метиламина: а) специфический запах;				
	б) газы при нормальных условиях;в) хорошая растворимость в воде;				
	г) образуют соли при взаимодействии с кислотами.				
7.	. Укажите, какую окраску имеет фенолфталеин в водном растворе три-				
метилам	ина:				
	а) синюю; б) розовую; в) фиолетовую; г) не изменяется.				
8.	Укажите вещества, с которыми взаимодействует метиламин:				
	а) бромоводородная кислота; б) соляная кислота;				
	в) серная кислота; г) кислород.				
9.	В результате сгорания органических аминов образуются:				
	а) азот; б) вода; в) CO ₂ ; г) оксид азота (IV).				

действии на анилин хлороводорода:

10. К какому классу соединений относится вещество, полученное при

- **а)** кислота; **б)** соль;
- в) эфир; г) аминокислота?
- 11. Укажите ряд аминов, в котором слева направо основные свойства увеличиваются:
 - a) $C_6H_5NH_2 < (C_6H_5)_2NH < C_2H_5NH_2 < (C_2H_5)_2NH < NH_3$;
 - **6)** $(C_6H_5)_2 NH < C_6H_5NH_2 < NH_3 < C_2H_5NH_2 < (C_2H_5)_2NH$;
 - **B)** $NH_3 < C_6H_5NH_2 < (C_6H_5)_2NH < C_2H_5NH_2 < (C_2H_5)_2NH$;
 - Γ) $(C_6H_5)_2$ NH $< C_2H_5$ NH $_2 < NH_3 < C_6H_5$ NH $_2 < (C_6H_5)_2$ NH.
 - 12. Охарактеризуйте строение и свойства анилина:
- **а)** в бензольном ядре в положениях 2, 4,6 увеличена электронная плотность;
 - б) реагирует с бромной водой;
 - в) основные свойства проявляются слабее, чем у алифатических аминов;
 - г) основные свойства проявляются сильнее, чем у дифениламина.
 - 13. Укажите, с какими веществами реагирует анилин:
 - а) соляная кислота; б) бром;
 - в) бромная вода; г) серная кислота.
- 14. Укажите вещество, которое образуется при действии гидроксида натрия на хлорид фениламмония:
 - **a**) фенол; **б**) аммиак; **в**) анилин; **г**) хлорфенол.
 - 15. Укажите области применения анилина:
 - а) получение красителей;
 - б) получение взрывчатых веществ;
 - в) получение лекарственных препаратов;
 - г) получение анилиноформальдегидных смол.

15. Аминокислоты

Аминокислоты — это азотсодержащие органические соединения, содержащие аминогруппы –NH₂ и карбоксильные группы (–COOH).

Аминокислоты встречаются в природе в свободном виде и в составе других соединений. Из молекул аминокислот состоят все растительные и животные белки.

Изомерия и номенклатура. Изомерия аминокислот определяется различным строением углеродной цепи и положением аминогруппы. По междуна-

родной номенклатуре названия аминокислот образуются от названий соответствующих карбоновых кислот с добавлением префикса амино-:

$$\overset{4}{\text{CH}_3} - \overset{3}{\text{CH}_2} - \overset{2}{\overset{2}{\text{C}}} \overset{1}{\text{H}} - \overset{1}{\overset{2}{\overset{2}{\text{C}}}} \overset{O}{\text{OH}} \quad 2$$
 — аминобутановая кислота $\overset{4}{\text{NH}_2}$

$$CH_{3}^{4} - CH_{2}^{3} - CH_{2}^{2} - CH_{2}^{2} - CH_{2}^{1} = OH_{2}^{0}$$
 3 — аминобутановая кислота NH_{2}

$$H_2N-\overset{4}{C}H_2-\overset{3}{C}H_2-\overset{2}{C}H_2-\overset{1}{C}\overset{O}{\longleftrightarrow}OH$$
 4 — аминобутановая кислота $\overset{C}{C}H_3$ $\overset{3}{C}H_3-\overset{2}{C}-\overset{1}{C}\overset{O}{\longleftrightarrow}OH$ 2 — амино- 2 метилпропановая кислота $\overset{N}{C}H_3$

Кроме международной номенклатуры, употребляются еще названия аминокислот, в которых вместо цифр ставят буквы греческого алфавита: α , β , γ и т. д. Например, 2-аминобутановую кислоту CH_3 – CH_2 – $CH(NH_2)$ –COOH можно назвать также α -аминомасляной. Многие аминокислоты имеют тривиальные названия, например, глицин H_2N – CH_2COOH , аланин CH_3 – $CH(NH_2)$ –COOH.

Получение. Аминокислоты получают путем гидролиза белков. При гидролизе любого белка получается смесь α-аминокислот. Известны также синтетические способы получения аминокислот. Например: сначала уксусная кислота реагирует с хлором (реакция I), затем хлоруксусная кислота реагирует с амиаком (реакция 2).

$$CH_3COOH + Cl_2 \rightarrow ClCH_2 - COOH + HCl$$
 (1)

$$ClCH2COOH + NH3 \rightarrow H2N-CH2COOH + HCl$$
 (2)

Физические свойства. Аминокислоты — это бесцветные кристаллические вещества, растворимые в воде, многие из них имеют сладкий вкус.

Химические свойства

1. Аминокислоты имеют свойства оснований и кислот и поэтому являются амфотерными органическими соединениями. Их кислотные и основные свойства определяются разными группами, в отличие от неорганических амфотерных соединений.

$$H_2N$$
– CH_2 – $COOH+NaOH \rightarrow H_2N – CH_2 – $COONa + H_2O
 $HOOC$ – CH_2 – NH_2 + $HCl \rightarrow$ $[HOOC$ – CH_2 – $NH_3]$ ⁺ Cl ⁻
(или $HOOC$ – CH_2 – NH_2 · HCl)$$

2. Аминокислоты реагируют со спиртами, образуя сложные эфиры:

$$H_2N$$
- CH_2 - $COOH$ + HOR \longrightarrow H_2N - CH_2 - C O - R $+$ H_2O

3. Присутствие в молекуле одинакового числа аминогрупп и карбоксильных групп приводит к взаимной внутренней нейтрализации:

$$\begin{array}{c} H \\ H - N - CH_2 - C \stackrel{\bigcirc{O}}{\stackrel{\longleftarrow}{\bigcirc} - H} \end{array} \longrightarrow \begin{array}{c} H \\ H - \stackrel{\stackrel{\longrightarrow}{|}}{\stackrel{\longrightarrow}{\bigcirc} - CH_2 - COO^-} \\ H \end{array}$$

Образующая соль имеет два противоположных заряда и называется биполярным ионом, т. е. ионом, имеющим два полюса. Раствор соли нейтральный.

4. Аминокислоты реагируют друг с другом и образуют пептиды $H_2NCH_2COOH+H_2NCH_2COOH \rightarrow H_2NCH_2CONHCH_2COOH + H_2O$

При взаимодействии двух молекул аминокислот образуются дипептиды, трех — трипептиды, четырех — тетрапептиды и т. д. В конечном итоге образуются высокомолекулярные соединения, которые называются полипептидами. Группа атомов –СО–NH— называется пептидной или амидной группой, а связь между атомами углерода и азота — пептидной или амидной связью.

Применение. Аминокислоты — источники образования белков, пептидов, ферментов и гормонов. Нужные для этого аминокислоты человек и животные получают в виде пищи, содержащей различные белки. Белки в пищеварительном тракте подвергаются расщеплению на отдельные аминокислоты, из которых затем синтезируются белки другого состава.

Аминокислоты используются в качестве лечебного средства при некоторых болезнях, для подкормки животных и как исходные вещества для получения искусственных волокон. Например, для получения синтетического волокна капрон используют є-аминокапроновую кислоту

$$H_2NCH_2CH_2CH_2CH_2CH_2CH_2COOH$$
.

Молекулы этой кислоты реагируют друг с другом: nH_2N – $(CH_2)_5$ –COOH+ nH_2N – $(CH_2)_5$ –COOH+ nH_2N – $(CH_2)_5$ –COOH+ nH_2O

Процессы образования высокомолекулярных соединений с образованием побочных низкомолекулярных веществ (H_2O , NH_3) называются реакциями поликонденсации.

Вопросы и упражнения

Что такое аминокислоты?

Напишите уравнения реакций, которые характеризуют амфотерные свойства аминокислот.

Напишите структурные формулы всех изомерных кислот:

- а) аминомасляных;
- б) аминовалериановых.

Напишите уравнения реакции получения этилового эфира α -амино-пропионовой кислоты.

Напишите формулы двух типов солей аминоуксусной кислоты

Напишите уравнения реакций 2-аминопропионовй кислоты:

- а) с гидроксидом калия;
- б) с серной кислотой;
- в) с этанолом.

Что такое пептидная (амидная) связь?

Что такое реакция поликонденсации?

Напишите уравнения реакций для превращений:

- a) CaC₂→C₂H₂→CH₃CHO→CH₃COOH→ClCH₂COOH→H₂NCH₂COOH
- **6)** $C_2H_6 \rightarrow ClCH_2COOH \rightarrow H_2NCH_2COOH \rightarrow H_2NCH_2CONHCH_2COOH$

Задачи

- 1. 3,56 г аминокислоты образует с этанолом 4,68 г сложного эфира. Установите формулу аминокислоты и назовите ее. (Ответ: CH₃–CH(NH₂)COOH, аланин)
- 2. 30 г смеси аминоуксусной, уксусной и ацетальдегида для получения соли требует 5,38 л хлороводорода (н.у.) или 10,08 г оксида кальция. Вычислите массовые доли веществ в смеси. (Ответ: $CH_3COOH 24\%$; $CH_3CHO 16\%$; аминоуксусная кислота 60%)
- 3. Имеется водный раствор соляной кислоты с концентрацией хлороводорода 0,15 моль в одном литре раствора. Какой объем этого раствора потребуется для взаимодействия с 26,7 г 3-аминопропановой кислоты? (Ответ: 2 л)

Тестовый самоконтроль по теме «Аминокислоты»

- 1. Укажите число изомеров у аминомасляной кислоты:
 - **a)** 2; **б)** 3; **в)** 4; **г)** 5.
- 2. Какая из приведенных формул веществ соответствует β-аминопропионовой кислоте:
 - **a)** CH₃-CH(NH₂)-COOH; **6)** CH₃-CH(NH₂) CH₂COOH;

	B) $H_2N - CH_2 - CH_2COOH$;	г) Cl	$-CH_2-CH(NH_2)-COOH?$	
3.	Укажите способы получения аминокислот:			
	а) гидролиз белков;			
	б) восстановление нитро	осоединений	й, содержащих карбоксильнук	
группу;				
	в) хлорирование карбоновых кислот, затем взаимодействие с аммиаком г) окисление спиртов, содержащих аминогруппу.			
4.	В результате гидролиза любого белка преимущественно образуются:			
	а) β-аминокислоты;	б) α-амино	кислоты;	
	в) ү-аминокислоты;	г) δ-аминов	кислоты.	
5.	Укажите реакции, в которые вступают аминокислоты:			
	а) этерификация;	б) полимер	изация;	
	в) поликонденсация;	г) образова	ние пептидов.	
6.	. Аминокислоты образуют соли:			
	а) с металлами;	б) со щелоч	нами;	
	в) со спиртами;	г) с неорган	ническими кислотами.	
7.	Укажите, водный раствор какой аминокислоты имеет нейтральную ре-			
акцию:				
	a) H ₂ N–(CH ₂) ₅ COOH;	6) CH ₃ COO	oK;	
	в) H ₂ NCH ₂ COOH;	Γ) H ₂ N(CH ₂) ₄ CH(NH ₂)COOH.	
8.	8. Укажите вещества, с которыми реагирует аминоуксусная кислота:			
	a) NaOH;	6) HCl;		
	в) H ₂ NCH ₂ COOH;	Γ) C ₆ H ₅ CH ₃		
9. Укажите число пептидных (амидных) связей в трипептиде:				
	a) 2; 6) 3; B) 1;	г) 4.		
10	. Волокно капрон — продуг	кт полконде	нсации:	
	а) α-аминокапроновой кис	лоты;	б) β-аминокапроновой кислоты;	
	в) у-аминокапроновой кис.	поты;	г) ε-аминокапроновой кислоты.	
	Уче	бное издани	ie	

Ткачёв Сергей Викторович

ВВЕДЕНИЕ В ОРГАНИЧЕСКУЮ ХИМИЮ

Учебно-методическое пособие

Издание третье

Ответственный за выпуск Е. В. Барковский Редактор Л. И. Жук Компьютерный набор О. И. Смирновой Компьютерная верстка Н. М. Федорцовой

Подписано в печать 22.02.08. Формат $60\times84/16$. Бумага писчая «Снегурочка». Печать офсетная. Гарнитура «Тітев». Усл. печ. л. 6,28. Уч.-изд. л. 6,48. Тираж 100 экз. Заказ 117. Издатель и полиграфическое исполнение — Белорусский государственный медицинский университет. ЛИ № 02330/0133420 от 14.10.2004; ЛП № 02330/0131503 от 27.08.2004. 220030, г. Минск, Ленинградская, 6.